ARE LINES MUCH BIGGER THAN LINE SEGMENTS?

被引:5
作者
Keleti, Tamas [1 ]
机构
[1] Eotvos Lorand Univ, Inst Math, Pazmany Peter Setany 1-C, H-1117 Budapest, Hungary
关键词
Hausdorff dimension; lines; union of line segments; Besicovitch set; Nikodym set; Kakeya Conjecture; MINKOWSKI DIMENSION; BESICOVITCH SETS; KAKEYA;
D O I
10.1090/proc/12978
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We pose the following conjecture: (star) If A is the union of line segments in R-n, and B is the union of the corresponding full lines, then the Hausdorff dimensions of A and B agree. We prove that this conjecture would imply that every Besicovitch set (compact set that contains line segments in every direction) in R-n has Hausdorff dimension at least n - 1 and (upper) Minkowski dimension n. We also prove that conjecture (star) holds if the Hausdorff dimension of B is at most 2, so in particular it holds in the plane.
引用
收藏
页码:1535 / 1541
页数:7
相关论文
共 19 条
[11]   An improved bound on the Minkowski dimension of Besicovitch sets in R3 [J].
Katz, NH ;
Laba, I ;
Tao, T .
ANNALS OF MATHEMATICS, 2000, 152 (02) :383-446
[12]   An improved bound for the Minkowski dimension of Besicovitch sets in medium dimension [J].
Laba, I ;
Tao, T .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2001, 11 (04) :773-806
[13]   COMPACT SET OF DISJOINT LINE SEGMENTS IN E3 WHOSE END SET HAS POSITIVE MEASURE [J].
LARMAN, DG .
MATHEMATIKA, 1971, 18 (35) :112-&
[14]  
Marstrand J., 1954, Proc. London Math. Soc., V3, P257, DOI [DOI 10.1112/PLMS/S3-4.1.257, 10.1112/plms/s3-4.1.257]
[15]  
Mattila P., 1975, Annales Academiae Scientiarum Fennicae, Series AI (Mathematica), V1, P227
[16]  
Mattila Pertti, 1995, CAMBRIDGE STUDIES AD, V44
[17]  
Tao T., 2001, AM MATH SOC, V48, P294
[18]  
Wolff T., 1999, Prospects in Mathematics, V2, P129
[19]  
Wolff T, 1995, REV MAT IBEROAM, V11, P651