Epi-GTBN: an approach of epistasis mining based on genetic Tabu algorithm and Bayesian network

被引:21
作者
Guo, Yang [1 ]
Zhong, Zhiman [1 ]
Yang, Chen [1 ]
Hu, Jiangfeng [1 ]
Jiang, Yaling [1 ]
Liang, Zizhen [1 ]
Gao, Hui [1 ]
Liu, Jianxiao [1 ]
机构
[1] Huazhong Agr Univ, Coll Informat, Hubei Key Lab Agr Bioinformat, Wuhan 430070, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Epistasis; Genetic algorithm; Tabu; Bayesian network; INFERENCE;
D O I
10.1186/s12859-019-3022-z
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
BackgroundMining epistatic loci which affects specific phenotypic traits is an important research issue in the field of biology. Bayesian network (BN) is a graphical model which can express the relationship between genetic loci and phenotype. Until now, it has been widely used into epistasis mining in many research work. However, this method has two disadvantages: low learning efficiency and easy to fall into local optimum. Genetic algorithm has the excellence of rapid global search and avoiding falling into local optimum. It is scalable and easy to integrate with other algorithms. This work proposes an epistasis mining approach based on genetic tabu algorithm and Bayesian network (Epi-GTBN). It uses genetic algorithm into the heuristic search strategy of Bayesian network. The individual structure can be evolved through the genetic operations of selection, crossover and mutation. It can help to find the optimal network structure, and then further to mine the epistasis loci effectively. In order to enhance the diversity of the population and obtain a more effective global optimal solution, we use the tabu search strategy into the operations of crossover and mutation in genetic algorithm. It can help to accelerate the convergence of the algorithm.ResultsWe compared Epi-GTBN with other recent algorithms using both simulated and real datasets. The experimental results demonstrate that our method has much better epistasis detection accuracy in the case of not affecting the efficiency for different datasets.ConclusionsThe presented methodology (Epi-GTBN) is an effective method for epistasis detection, and it can be seen as an interesting addition to the arsenal used in complex traits analyses.
引用
收藏
页数:18
相关论文
共 45 条
[1]  
[Anonymous], 2017, COMPLEXITY
[2]   EPIQ-efficient detection of SNP-SNP epistatic interactions for quantitative traits [J].
Arkin, Ya'ara ;
Rahmani, Elior ;
Kleber, Marcus E. ;
Laaksonen, Reijo ;
Maerz, Winfried ;
Halperin, Eran .
BIOINFORMATICS, 2014, 30 (12) :19-25
[3]   A support vector machine approach for detecting gene-gene interaction [J].
Chen, Shyh-Huei ;
Sun, Jielin ;
Dimitrov, Latchezar ;
Turner, Aubrey R. ;
Adams, Tamara S. ;
Meyers, Deborah A. ;
Chang, Bao-Li ;
Zheng, S. Lilly ;
Groenberg, Henrik ;
Xu, Jianfeng ;
Hsu, Fang-Chi .
GENETIC EPIDEMIOLOGY, 2008, 32 (02) :152-167
[4]   JBASE: Joint Bayesian Analysis of Subphenotypes and Epistasis [J].
Colak, Recep ;
Kim, TaeHyung ;
Kazan, Hilal ;
Oh, Yoomi ;
Cruz, Miguel ;
Valladares-Salgado, Adan ;
Peralta, Jesus ;
Escobedo, Jorge ;
Parra, Esteban J. ;
Kim, Philip M. ;
Goldenberg, Anna .
BIOINFORMATICS, 2016, 32 (02) :203-210
[5]  
De Jong K.A., 1975, ANAL BEHAV CLASS GEN
[6]   Characterizing gene-gene interactions in a statistical epistasis network of twelve candidate genes for obesity [J].
De, Rishika ;
Hu, Ting ;
Moore, Jason H. ;
Gilbert-Diamond, Diane .
BIODATA MINING, 2015, 8
[7]   Exploration of gene-gene interaction effects using entropy-based methods [J].
Dong, Changzheng ;
Chu, Xun ;
Wang, Ying ;
Wang, Yi ;
Jin, Li ;
Shi, Tieliu ;
Huang, Wei ;
Li, Yixue .
EUROPEAN JOURNAL OF HUMAN GENETICS, 2008, 16 (02) :229-235
[8]   RNA folding on the 3D triangular lattice [J].
Gillespie, Joel ;
Mayne, Martin ;
Jiang, Minghui .
BMC BIOINFORMATICS, 2009, 10
[9]   GENETIC ALGORITHMS AND TABU SEARCH - HYBRIDS FOR OPTIMIZATION [J].
GLOVER, F ;
KELLY, JP ;
LAGUNA, M .
COMPUTERS & OPERATIONS RESEARCH, 1995, 22 (01) :111-134
[10]   Genetic studies of complex human diseases: Characterizing SNP-disease associations using Bayesian networks [J].
Han, Bing ;
Chen, Xue-wen ;
Talebizadeh, Zohreh ;
Xu, Hua .
BMC SYSTEMS BIOLOGY, 2012, 6