Limit Cycles Coming from Some Uniform Isochronous Centers

被引:15
作者
Liang, Haihua [1 ]
Llibre, Jaume [2 ]
Torregrosa, Joan [2 ]
机构
[1] Guangdong Polytech Normal Univ, Dept Comp Sci, Guangzhou 510665, Guangdong, Peoples R China
[2] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Catalonia, Spain
关键词
Periodic Solution; Uniform Isochronous Centers; Averaging Theory; Weak Hilbert Problem; BIFURCATION; SYSTEMS;
D O I
10.1515/ans-2015-5010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article is about the weak 16th Hilbert problem, i.e. we analyze how many limit cycles can bifurcate from the periodic orbits of a given polynomial differential center when it is perturbed inside a class of polynomial differential systems. More precisely, we consider the uniform isochronous centers (x) over dot = -y + x(2)y(x(2) + y(2))(n), (y) over dot = x + xy(2) (x(2) + y(2))n, of degree 2n + 3 and we perturb them inside the class of all polynomial differential systems of degree 2n + 3. For n = 0, 1 we provide the maximum number of limit cycles, 3 and 8 respectively, that can bifurcate from the periodic orbits of these centers using averaging theory of first order, or equivalently Abelian integrals. For n = 2 we show that at least 12 limit cycles can bifurcate from the periodic orbits of the center.
引用
收藏
页码:197 / 220
页数:24
相关论文
共 19 条
[1]  
[Anonymous], 1956, Some Problems of the Theory of Nonlinear Oscillations
[2]  
[Anonymous], 1948, Handbook of Mathematical Functions withFormulas, Graphs, and Mathematical Tables, DOI DOI 10.1119/1.15378
[3]  
Arnold V.I., 1990, Adv. Soviet Math, V1, P1
[4]  
Buica A, 2007, COMMUN PUR APPL ANAL, V6, P103
[5]  
Christopher C., 2007, ADV COURSES MATH
[6]  
Coll B, 2005, DYNAM CONT DIS SER A, V12, P275
[7]   QUADRATIC PERTURBATIONS OF A CLASS OF QUADRATIC REVERSIBLE SYSTEMS WITH TWO CENTERS [J].
Coll, Bartomeu ;
Li, Chengzhi ;
Prohens, Rafel .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2009, 24 (03) :699-729
[8]  
Hilbert D., 1902, B AM MATH SOC, V8, P437, DOI DOI 10.1090/S0002-9904-1902-00923-3
[9]   Centennial history of Hilbert's 16th problem [J].
Ilyashenko, Y .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 39 (03) :301-354
[10]  
Kaloshin V., 2005, CRM MONOGR SER, V24, P111