A dynamically tunable terahertz metamaterial absorber based on an electrostatic MEMS actuator and electrical dipole resonator array

被引:41
作者
Hu, Fangrong [1 ,5 ]
Xu, Ningning [2 ]
Wang, Weiming [3 ]
Wang, Yue'e [1 ,5 ]
Zhang, Wentao [1 ,5 ]
Han, Jiaguang [4 ]
Zhang, Weili [2 ,4 ]
机构
[1] Guilin Univ Elect Technol, Guangxi Coll & Univ Key Lab Optoelect Informat Pr, Guilin 541004, Peoples R China
[2] Oklahoma State Univ, Sch Elect & Comp Engn, Stillwater, OK 74078 USA
[3] Chinese Acad Sci, Inst Opt & Elect, State Key Lab Opt Technol Microfabricat, Chengdu 610209, Peoples R China
[4] Tianjin Univ, Coll Precis Instrument & Optoelect Engn, Tianjin 300072, Peoples R China
[5] Guangxi Expt Ctr Informat Sci, Guilin 541004, Peoples R China
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
tunable terahertz absorber; metamaterial; microelectromechanical systems (MEMS); electrical dipole resonator; electrostatic actuator; POLYSILICON;
D O I
10.1088/0960-1317/26/2/025006
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We experimentally demonstrate a dynamically tunable terahertz (THz) metamaterial absorber based on an electrostatic microelectromechanical systems (MEMS) actuator and electrical dipole resonator array. The absorption of the THz wave is mainly a result of the electrical dipole resonance, which shows a tunable performance on demand. By preforming the finite integral technique, we discovered that the central absorption frequency and the amplitude can be simultaneously tuned by the applied voltage U. Characterized by a white light interferometer and a THz time domain spectroscopy system, our THz absorber is measured to show a modulation of the central frequency and the amplitude to about 10% and 20%, respectively. The experimental results show good agreement with the simulation. This dynamically tunable absorber has potential applications on THz filters, modulators and controllers.
引用
收藏
页数:11
相关论文
共 38 条
[1]   Metamaterial electromagnetic energy harvester with near unity efficiency [J].
Almoneef, Thamer S. ;
Ramahi, Omar M. .
APPLIED PHYSICS LETTERS, 2015, 106 (15)
[2]   Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach [J].
Andryieuski, Andrei ;
Lavrinenko, Andrei V. .
OPTICS EXPRESS, 2013, 21 (07) :9144-9155
[3]   Constrained Euler buckling [J].
Domokos, G ;
Holmes, P ;
Royce, B .
JOURNAL OF NONLINEAR SCIENCE, 1997, 7 (03) :281-314
[4]   THz imaging and sensing for security applications - explosives, weapons and drugs [J].
Federici, JF ;
Schulkin, B ;
Huang, F ;
Gary, D ;
Barat, R ;
Oliveira, F ;
Zimdars, D .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2005, 20 (07) :S266-S280
[5]   Impact of high-thermal budget anneals on polysilicon as a micromechanical material [J].
Gianchandani, YB ;
Shinn, M ;
Najafi, K .
JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 1998, 7 (01) :102-105
[6]   Polarization insensitive, broadband terahertz metamaterial absorber [J].
Grant, James ;
Ma, Yong ;
Saha, Shimul ;
Khalid, Ata ;
Cumming, David R. S. .
OPTICS LETTERS, 2011, 36 (17) :3476-3478
[7]   Multiband terahertz metamaterial absorber [J].
Gu Chao ;
Qu Shao-Bo ;
Pei Zhi-Bin ;
Xu Zhuo ;
Liu Jia ;
Gu Wei .
CHINESE PHYSICS B, 2011, 20 (01)
[8]   MEMS reconfigurable metamaterial for terahertz switchable filter and modulator [J].
Han, Zhengli ;
Kohno, Kenta ;
Fujita, Hiroyuki ;
Hirakawa, Kazuhiko ;
Toshiyoshi, Hiroshi .
OPTICS EXPRESS, 2014, 22 (18) :21326-21339
[9]   DUAL-BAND TERAHERTZ METAMATERIAL ABSORBER WITH POLARIZATION INSENSITIVITY AND WIDE INCIDENT ANGLE [J].
He, X. -J. ;
Wang, Y. ;
Wang, J. -M. ;
Gui, T. -L. ;
Wu, Q. .
PROGRESS IN ELECTROMAGNETICS RESEARCH-PIER, 2011, 115 :381-397
[10]   Design of a tunable terahertz narrowband metamaterial absorber based on an electrostatically actuated MEMS cantilever and split ring resonator array [J].
Hu, Fangrong ;
Qian, Yixian ;
Li, Zhi ;
Niu, Junhao ;
Nie, Kun ;
Xiong, Xianming ;
Zhang, Wentao ;
Peng, Zhiyong .
JOURNAL OF OPTICS, 2013, 15 (05)