FALL3D-8.0: a computational model for atmospheric transport and deposition of particles, aerosols and radionuclides - Part 2: Model validation

被引:25
作者
Prata, Andrew T. [1 ]
Mingari, Leonardo [1 ]
Folch, Arnau [1 ]
Macedonio, Giovanni [2 ]
Costa, Antonio [3 ]
机构
[1] Barcelona Supercomp Ctr BSC, Barcelona, Spain
[2] Ist Nazl Geofis & Vulcanol, Osservatorio Vesuviano, Naples, Italy
[3] Ist Nazl Geofis & Vulcanol, Sez Bologna, Bologna, Italy
基金
欧盟地平线“2020”;
关键词
CORDON CAULLE ERUPTION; DETECTING VOLCANIC ASH; SULFUR-DIOXIDE; SATELLITE MEASUREMENTS; RADIATIVE-TRANSFER; CLOUD PROPERTIES; RETRIEVAL; SO2; PLUMES; ALGORITHM;
D O I
10.5194/gmd-14-409-2021
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
This paper presents model validation results for the latest version release of the FALL3D atmospheric transport model. The code has been redesigned from scratch to incorporate different categories of species and to overcome legacy issues that precluded its preparation towards extreme-scale computing. The model validation is based on the new FALL3D-8.0 test suite, which comprises a set of four real case studies that encapsulate the major features of the model; namely, the simulation of long-range fine volcanic ash dispersal, volcanic SO2 dispersal, tephra fallout deposits and the dispersal and deposition of radionuclides. The first two test suite cases (i.e. the June 2011 Puyehue-Cordon Caulle ash cloud and the June 2019 Raikoke SO2 cloud) are validated against geostationary satellite retrievals and demonstrate the new FALL3D data insertion scheme. The metrics used to validate the volcanic ash and SO2 simulations are the structure, amplitude and location (SAL) metric and the figure of merit in space (FMS). The other two test suite cases (i.e. the February 2013 Mt. Etna ash cloud and associated tephra fallout deposit, and the dispersal of radionuclides resulting from the 1986 Chernobyl nuclear accident) are validated with scattered ground-based observations of deposit load and local particle grain size distributions and with measurements from the Radioactivity Environmental Monitoring database. For validation of tephra deposit loads and radionuclides, we use two variants of the normalised root-mean-square error metric. We find that FALL3D-8.0 simulations initialised with data insertion consistently improve agreement with satellite retrievals at all lead times up to 48 h for both volcanic ash and and FMS scores greater than 0.40 indicate acceptable agreement with satellite retrievals of volcanic ash and SO2. In addition, we show very good agreement, across several orders of magnitude, between the model and observations for the 2013 Mt. Etna and 1986 Chernobyl case studies. Our results, along with the validation datasets provided in the publicly available test suite, form the basis for future improvements to FALL3D (version 8 or later) and also allow for model intercomparison studies.
引用
收藏
页码:409 / 436
页数:28
相关论文
共 82 条
[71]   Sulfur dioxide retrievals from TROPOMI onboard Sentinel-5 Precursor: algorithm theoretical basis [J].
Theys, Nicolas ;
De Smedt, Isabelle ;
Yu, Huan ;
Danckaert, Thomas ;
van Gent, Jeroen ;
Hoermann, Christoph ;
Wagner, Thomas ;
Hedelt, Pascal ;
Bauer, Heiko ;
Romahn, Fabian ;
Pedergnana, Mattia ;
Loyola, Diego ;
Van Roozendael, Michel .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2017, 10 (01) :119-153
[72]   An Advanced System to Monitor the 3D Structure of Diffuse Volcanic Ash Clouds [J].
Vernier, J. -P. ;
Fairlie, T. D. ;
Murray, J. J. ;
Tupper, A. ;
Trepte, C. ;
Winker, D. ;
Pelon, J. ;
Garnier, A. ;
Jumelet, J. ;
Pavolonis, M. ;
Omar, A. H. ;
Powell, K. A. .
JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY, 2013, 52 (09) :2125-2138
[73]  
Virtanen P, 2020, NAT METHODS, V17, P261, DOI 10.1038/s41592-019-0686-2
[74]   Thermal infrared remote sensing of volcanic emissions using the moderate resolution imaging spectroradiometer [J].
Watson, IM ;
Realmuto, VJ ;
Rose, WI ;
Prata, AJ ;
Bluth, GJS ;
Gu, Y ;
Bader, CE ;
Yu, T .
JOURNAL OF VOLCANOLOGY AND GEOTHERMAL RESEARCH, 2004, 135 (1-2) :75-89
[75]   Retrieval of sizes and total masses of particles in volcanic clouds using AVHRR bands 4 and 5 [J].
Wen, Shiming ;
Rose, William I. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1994, 99 (D3) :5421-5431
[76]   SAL-A Novel Quality Measure for the Verification of Quantitative Precipitation Forecasts [J].
Wernli, Heini ;
Paulat, Marcus ;
Hagen, Martin ;
Frei, Christoph .
MONTHLY WEATHER REVIEW, 2008, 136 (11) :4470-4487
[77]   Uncertainty in two-channel infrared remote sensing retrievals of a well-characterised volcanic ash cloud [J].
Western, Luke M. ;
Watson, Matthew I. ;
Francis, Peter N. .
BULLETIN OF VOLCANOLOGY, 2015, 77 (08)
[78]   Using data insertion with the NAME model to simulate the 8 May 2010 Eyjafjallajokull volcanic ash cloud [J].
Wilkins, K. L. ;
Watson, I. M. ;
Kristiansen, N. I. ;
Webster, H. N. ;
Thomson, D. J. ;
Dacre, H. F. ;
Prata, A. J. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2016, 121 (01) :306-323
[79]   Overview of the CALIPSO Mission and CALIOP Data Processing Algorithms [J].
Winker, David M. ;
Vaughan, Mark A. ;
Omar, Ali ;
Hu, Yongxiang ;
Powell, Kathleen A. ;
Liu, Zhaoyan ;
Hunt, William H. ;
Young, Stuart A. .
JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2009, 26 (11) :2310-2323
[80]   DETECTION OF CLOUDS IN ANTARCTICA FROM INFRARED MULTISPECTRAL DATA OF AVHRR [J].
YAMANOUCHI, T ;
SUZUKI, K ;
KAWAGUCHI, S .
JOURNAL OF THE METEOROLOGICAL SOCIETY OF JAPAN, 1987, 65 (06) :949-962