Learning Semantic Models of Data Sources Using Probabilistic Graphical Models

被引:14
作者
Binh Vu [1 ]
Knoblock, Craig A. [1 ]
Pujara, Jay [1 ]
机构
[1] USC Informat Sci Inst, Marina Del Rey, CA 90292 USA
来源
WEB CONFERENCE 2019: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW 2019) | 2019年
关键词
Semantic models; knowledge graph; probabilistic graphical models; semantic web; linked data; ontology; TABLES;
D O I
10.1145/3308558.3313711
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A semantic model of a data source is a representation of the concepts and relationships contained in the data. Building semantic models is a prerequisite to automatically publishing data to a knowledge graph. However, creating these semantic models is a complex process requiring considerable manual effort and can be error-prone. In this paper, we present a novel approach that efficiently searches over the combinatorial space of possible semantic models, and applies a probabilistic graphical model to identify the most probable semantic model for a data source. Probabilistic graphical models offer many advantages over existing methods: they are robust to noisy inputs and provide a straightforward approach for exploiting relationships within the data. Our solution uses a conditional random field (CRF) to encode structural patterns and enforce conceptual consistency within the semantic model. In an empirical evaluation, our approach outperforms state of the art systems by an average 8.4% of F-1 score, even with noisy input data.
引用
收藏
页码:1944 / 1953
页数:10
相关论文
共 31 条
[1]  
Alexe B., 2011, SIGMOD, P133, DOI DOI 10.1145/1989323.1989338
[2]  
[Anonymous], P 14 INT SEM WEB C I
[3]  
[Anonymous], 2004, SIGMOD, DOI DOI 10.1145/1007568.1007612
[4]  
[Anonymous], P EXT SEM WEB C CRET
[5]  
[Anonymous], 2009, WEB SEMANTICS SCI SE
[6]  
Aumueller D., 2005, P 2005 ACM SIGMOD IN, P906
[7]  
Bellahsene Z, 2011, DATA CENTRIC SYST AP, P1, DOI 10.1007/978-3-642-16518-4
[8]  
Bernstein PA, 2011, PROC VLDB ENDOW, V4, P695
[9]  
Craswell N., 2009, ENCY DATABASE SYSTEM, P1703, DOI DOI 10.1007/978-0-387-39940-9_488
[10]  
De Uña D, 2018, PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P1277