Existence results for a Kirchhoff-type equations involving the fractional p1(x) & p2(x)-Laplace operator

被引:0
作者
Zhang, Jinguo [1 ]
机构
[1] Jiangxi Normal Univ, Sch Math & Stat, Nanchang 330022, Jiangxi, Peoples R China
关键词
Fractional p(1)(x) & p(2)(x)-Laplace operator; Multiple solutions; Kirchhoff-type equation; Fountain theorem; SOBOLEV-HARDY EXPONENTS; POSITIVE SOLUTIONS; MULTIPLICITY; Q)-LAPLACIAN; SPACES; (P(X); (P;
D O I
10.1007/s13348-021-00318-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we use variational approaches to establish the existence of weak solutions for a class of Kirchhoff-type equations with fractional p(1)(x) & p(2)(x)-Laplacian operator, for 1 <= p(1)(x, y) < p(2)(x, y), sp(2)(x, y) < N for all (x, y) is an element of(Omega) over bar x (Omega) over bar, and a Caratheodory reaction term which does not satisfy the Ambrosetti-Rabinowitz type growth condition. By mountain pass theorem with Cerami condition and the theory of the fractional variable exponent Sobolev space, we prove the existence of nontrivial solution for the problems in an appropriate space of functions. Furthermore, a multiplicity result of the problem is proved for odd nonlinearity.
引用
收藏
页码:271 / 293
页数:23
相关论文
共 41 条
  • [1] On a Nonlocal Fractional p(.,.)-Laplacian Problem with Competing Nonlinearities
    Ali, K. B.
    Hsini, M.
    Kefi, K.
    Chung, N. T.
    [J]. COMPLEX ANALYSIS AND OPERATOR THEORY, 2019, 13 (03) : 1377 - 1399
  • [2] EXISTENCE, MULTIPLICITY AND CONCENTRATION FOR A CLASS OF FRACTIONAL p&q LAPLACIAN PROBLEMS IN RN
    Alves, Claudianor O.
    Ambrosio, Vincenzo
    Isernia, Teresa
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2019, 18 (04) : 2009 - 2045
  • [3] Ambrosio, ARXIV180110449V2
  • [4] Azroul, ARXIV190105687
  • [5] EIGENVALUE PROBLEMS INVOLVING THE FRACTIONAL p(x)-LAPLACIAN OPERATOR
    Azroul, E.
    Benkirane, A.
    Shimi, M.
    [J]. ADVANCES IN OPERATOR THEORY, 2019, 4 (02): : 539 - 555
  • [6] Azroul E., 2018, MOROCCAN J PURE APPL, V4, P46, DOI DOI 10.1515/MJPAA-2018-0006
  • [7] AZROUL E, 2019, APPL ANAL
  • [8] Baalal A., 2018, INT J MATH ANAL, V12, P88
  • [9] ON A NEW FRACTIONAL SOBOLEV SPACE AND APPLICATIONS TO NONLOCAL VARIATIONAL PROBLEMS WITH VARIABLE EXPONENT
    Bahrouni, Anouar
    Radulescu, Vicentiu D.
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2018, 11 (03): : 379 - 389
  • [10] Comparison and sub-supersolution principles for the fractional p(x)-Laplacian
    Bahrouni, Anouar
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 458 (02) : 1363 - 1372