Work Function Lowering of Graphite by Sequential Surface Modifications: Nitrogen and Hydrogen Plasma Treatment

被引:22
作者
Akada, Keishi [1 ]
Obata, Seiji [1 ]
Saiki, Koichiro [1 ]
机构
[1] Univ Tokyo, Dept Complex Sci & Engn, Kashiwanoha 5-1-5, Kashiwa, Chiba 2778561, Japan
关键词
FIELD-EFFECT TRANSISTORS; DOPED GRAPHENE; EMISSION; FILMS; FUNCTIONALIZATION; PERFORMANCE; DEFECTS; SITES; EDGES; OXIDE;
D O I
10.1021/acsomega.9b02208
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Graphite-related materials play an important role in various kinds of devices and catalysts. Controlling the properties of such materials is of great significance to widen the potential applications and improve the performance of such applications as field emission devices and catalyst for fuel cells. In particular, the work function strongly affects the performance, and thus development of methods to tune the work function widely is urgently required. Here, we achieved wide-range control of the work function of graphite by nitrogen and hydrogen plasma treatments. The time of hydrogen plasma treatment and the amount of nitrogen atoms doped beforehand could control the work function of graphite from 2.9 to 5.0 eV. The formation of a surface dipole layer and the nitrogen-derived electron donation contributed to such lowering of the work function, which is advantageous for applications in various fields.
引用
收藏
页码:16531 / 16535
页数:5
相关论文
共 36 条
[1]   Control of work function of graphene by plasma assisted nitrogen doping [J].
Akada, Keishi ;
Terasawa, Tomo-o ;
Imamura, Gaku ;
Obata, Seiji ;
Saiki, Koichiro .
APPLIED PHYSICS LETTERS, 2014, 104 (13)
[2]   Intrinsic Relationship between Enhanced Oxygen Reduction Reaction Activity and Nanoscale Work Function of Doped Carbons [J].
Cheon, Jae Yeong ;
Kim, Jong Hun ;
Kim, Jae Hyung ;
Goddeti, Kalyan C. ;
Park, Jeong Young ;
Joo, Sang Hoon .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (25) :8875-8878
[3]   Nitrogen-Doped Graphene and Twisted Bilayer Graphene via Hyperthermal Ion Implantation with Depth Control [J].
Cress, Cory D. ;
Schmucker, Scott W. ;
Friedman, Adam L. ;
Dev, Pratibha ;
Culbertson, James C. ;
Lyding, Joseph W. ;
Robinson, Jeremy T. .
ACS NANO, 2016, 10 (03) :3714-3722
[4]   Electron affinity of the bare and hydrogen covered single crystal diamond (111) surface [J].
Cui, JB ;
Ristein, J ;
Ley, L .
PHYSICAL REVIEW LETTERS, 1998, 81 (02) :429-432
[5]   Continuous, Highly Flexible, and Transparent Graphene Films by Chemical Vapor Deposition for Organic Photovoltaics [J].
De Arco, Lewis Gomez ;
Zhang, Yi ;
Schlenker, Cody W. ;
Ryu, Koungmin ;
Thompson, Mark E. ;
Zhou, Chongwu .
ACS NANO, 2010, 4 (05) :2865-2873
[6]   Photoelectron emission from nitrogen- and boron-doped diamond (100) surfaces [J].
Diederich, L ;
Kuttel, OM ;
Ruffieux, P ;
Pillo, T ;
Aebi, P ;
Schlapbach, L .
SURFACE SCIENCE, 1998, 417 (01) :41-52
[7]   Probing the Nature of Defects in Graphene by Raman Spectroscopy [J].
Eckmann, Axel ;
Felten, Alexandre ;
Mishchenko, Artem ;
Britnell, Liam ;
Krupke, Ralph ;
Novoselov, Kostya S. ;
Casiraghi, Cinzia .
NANO LETTERS, 2012, 12 (08) :3925-3930
[8]   Control of Graphene's Properties by Reversible Hydrogenation: Evidence for Graphane [J].
Elias, D. C. ;
Nair, R. R. ;
Mohiuddin, T. M. G. ;
Morozov, S. V. ;
Blake, P. ;
Halsall, M. P. ;
Ferrari, A. C. ;
Boukhvalov, D. W. ;
Katsnelson, M. I. ;
Geim, A. K. ;
Novoselov, K. S. .
SCIENCE, 2009, 323 (5914) :610-613
[9]   Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts [J].
Guo, Donghui ;
Shibuya, Riku ;
Akiba, Chisato ;
Saji, Shunsuke ;
Kondo, Takahiro ;
Nakamura, Junji .
SCIENCE, 2016, 351 (6271) :361-365
[10]   Plasma-graphene interaction and its effects on nanoscale patterning [J].
Harpale, Abhilash ;
Panesi, Marco ;
Chew, Huck Beng .
PHYSICAL REVIEW B, 2016, 93 (03)