Chlorophyll fluorescence tracks seasonal variations of photosynthesis from leaf to canopy in a temperate forest

被引:146
|
作者
Yang, Hualei [1 ,2 ]
Yang, Xi [3 ,4 ]
Zhang, Yongguang [5 ]
Heskel, Mary A. [2 ]
Lu, Xiaoliang [2 ]
Munger, J. William [6 ]
Sun, Shucun [1 ]
Tang, Jianwu [2 ]
机构
[1] Nanjing Univ, Sch Life Sci, Nanjing 210093, Jiangsu, Peoples R China
[2] Ecosyst Ctr, Marine Biol Lab, Woods Hole, MA 02543 USA
[3] Brown Univ, Dept Earth Environm & Planetary Sci, Providence, RI 02912 USA
[4] Univ Virginia, Dept Environm Sci, Charlottesville, VA 22903 USA
[5] Nanjing Univ, Int Inst Earth Syst Sci, Nanjing 210093, Jiangsu, Peoples R China
[6] Harvard Univ, Sch Engn & Appl Sci, Dept Earth & Planetary Sci, Cambridge, MA 02138 USA
基金
美国国家科学基金会;
关键词
carbon cycle; chlorophyll; gross primary production; photosynthesis; solar-induced fluorescence; vegetation indices; LIGHT-USE EFFICIENCY; GROSS PRIMARY PRODUCTION; NET PRIMARY PRODUCTION; ELECTRON-TRANSPORT; WATER-STRESS; MODEL; PRODUCTIVITY; VEGETATION; FIELD; STATE;
D O I
10.1111/gcb.13590
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
Accurate estimation of terrestrial gross primary productivity (GPP) remains a challenge despite its importance in the global carbon cycle. Chlorophyll fluorescence (ChlF) has been recently adopted to understand photosynthesis and its response to the environment, particularly with remote sensing data. However, it remains unclear how ChlF and photosynthesis are linked at different spatial scales across the growing season. We examined seasonal relationships between ChlF and photosynthesis at the leaf, canopy, and ecosystem scales and explored how leaf-level ChlF was linked with canopy-scale solar-induced chlorophyll fluorescence (SIF) in a temperate deciduous forest at Harvard Forest, Massachusetts, USA. Our results show that ChlF captured the seasonal variations of photosynthesis with significant linear relationships between ChlF and photosynthesis across the growing season over different spatial scales (R-2 = 0.73, 0.77, and 0.86 at leaf, canopy, and satellite scales, respectively; P < 0.0001). We developed a model to estimate GPP from the tower-based measurement of SIF and leaf-level ChlF parameters. The estimation of GPP from this model agreed well with flux tower observations of GPP (R-2 = 0.68; P < 0.0001), demonstrating the potential of SIF for modeling GPP. At the leaf scale, we found that leaf F-q'/F-m', the fraction of absorbed photons that are used for photochemistry for a light-adapted measurement from a pulse amplitude modulation fluorometer, was the best leaf fluorescence parameter to correlate with canopy SIF yield (SIF/APAR, R-2 = 0.79; P < 0.0001). We also found that canopy SIF and SIF-derived GPP (GPP(SIF)) were strongly correlated to leaf-level biochemistry and canopy structure, including chlorophyll content (R-2 = 0.65 for canopy GPP(SIF) and chlorophyll content; P < 0.0001), leaf area index (LAI) (R-2 = 0.35 for canopy GPP(SIF) and LAI; P < 0.0001), and normalized difference vegetation index (NDVI) (R-2 = 0.36 for canopy GPP(SIF) and NDVI; P < 0.0001). Our results suggest that ChlF can be a powerful tool to track photosynthetic rates at leaf, canopy, and ecosystem scales.
引用
收藏
页码:2874 / 2886
页数:13
相关论文
共 50 条
  • [21] Seasonal variations of canopy spectra and their indications to carbon fluxes in a temperate forest in northeast China
    Jiang, Jie
    Yu, Quanzhou
    Liu, Yujie
    Liang, Tianquan
    Tang, Qingxin
    Zhou, Lei
    Zhang, Hongli
    Zhang, Baohua
    Wang, Shaoqiang
    JOURNAL OF APPLIED REMOTE SENSING, 2022, 16 (04)
  • [22] Photosynthesis, chlorophyll fluorescence and within-canopy distribution of epiphytic ferns in a Mexican cloud forest
    Hietz, P
    Briones, O
    PLANT BIOLOGY, 2001, 3 (03) : 279 - 287
  • [23] Potential of solar-induced chlorophyll fluorescence to estimate transpiration in a temperate forest
    Lu, Xiaoliang
    Liu, Zhunqiao
    An, Shuqing
    Miralles, Diego G.
    Maes, Wouter H.
    Liu, Yaling
    Tang, Jianwu
    AGRICULTURAL AND FOREST METEOROLOGY, 2018, 252 : 75 - +
  • [24] Reduction of photosynthesis before midday depression occurred: leaf photosynthesis of Fagus crenata in a temperate forest in relation to canopy position and a number of days after rainfall
    Koyama, Kohei
    Kikuzawa, Kihachiro
    ECOLOGICAL RESEARCH, 2011, 26 (05) : 999 - 1006
  • [25] Comparison of total emitted solar-induced chlorophyll fluorescence (SIF) and top-of-canopy (TOC) SIF in estimating photosynthesis
    Lu, Xiaoliang
    Liu, Zhunqiao
    Zhao, Feng
    Tang, Jianwu
    REMOTE SENSING OF ENVIRONMENT, 2020, 251
  • [26] Evaluation of photosynthesis estimation from machine learning-based solar-induced chlorophyll fluorescence downscaling from canopy to leaf level
    Li, Hui
    Zhang, Hongyan
    Wang, Yeqiao
    Zhao, Jianjun
    Feng, Zhiqiang
    Chen, Hongbing
    Guo, Xiaoyi
    Xiong, Tao
    Xiao, Jingfeng
    Li, Xing
    ECOLOGICAL INDICATORS, 2024, 166
  • [27] Spatial and seasonal variation in leaf temperature within the canopy of a tropical forest
    Camilo Rey-Sanchez, A.
    Slot, Martijn
    Posada, Juan M.
    Kitajima, Kaoru
    CLIMATE RESEARCH, 2017, 71 (01) : 75 - 89
  • [28] Improvement of transpiration estimation based on a two-leaf conductance-photosynthesis model with seasonal parameters for temperate deciduous forests
    Jin, Jiaxin
    Liu, Ying
    Hou, Weiye
    Cai, Yulong
    Zhang, Fengyan
    Wang, Ying
    Fang, Xiuqin
    Huang, Lingxiao
    Yong, Bin
    Ren, Liliang
    FRONTIERS IN PLANT SCIENCE, 2023, 14
  • [29] Sun-Induced Chlorophyll Fluorescence, Photosynthesis, and Light Use Efficiency of a Soybean Field from Seasonally Continuous Measurements
    Miao, Guofang
    Guan, Kaiyu
    Yang, Xi
    Bernacchi, Carl J.
    Berry, Joseph A.
    DeLucia, Evan H.
    Wu, Jin
    Moore, Caitlin E.
    Meacham, Katherine
    Cai, Yaping
    Peng, Bin
    Kimm, Hyungsuk
    Masters, Michael D.
    JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES, 2018, 123 (02) : 610 - 623
  • [30] Monitoring of chlorophyll content in rice canopy and single leaf using sun-induced chlorophyll fluorescence
    Yin Y.
    Wang Y.
    Ma C.
    Zheng H.
    Cheng T.
    Tian Y.
    Zhu Y.
    Cao W.
    Yao X.
    Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2021, 37 (12): : 169 - 180