Multivariate elliptical truncated moments

被引:12
作者
Arismendi, Juan C. [1 ,2 ]
Broda, Simon [3 ,4 ]
机构
[1] Univ Reading, ICMA Ctr, Henley Business Sch, Reading, Berks, England
[2] Univ Monterrey, Dept Econ Accountancy & Finance, Monterrey, Mexico
[3] Univ Amsterdam, Dept Quantitat Econ, Amsterdam, Netherlands
[4] Tinbergen Inst Amsterdam, Amsterdam, Netherlands
关键词
Elliptical functions; Elliptical truncation; Multivariate truncated moments; Parametric distributions; Quadratic forms; Tail moments; TAILED RISK-FACTORS; VALUE-AT-RISK; EXPECTED SHORTFALL; QUADRATIC PORTFOLIOS; NORMAL-POPULATIONS; NORMAL VARIABLES; MODEL; DISTRIBUTIONS; REPRESENTATION; LOCATION;
D O I
10.1016/j.jmva.2017.02.011
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this study, we derive analytic expressions for the elliptical truncated moment generating function (MGF), the zeroth-, first-, and second-order moments of quadratic forms of the multivariate normal, Student's t, and generalized hyperbolic distributions. The resulting formulas were tested in a numerical application to calculate an analytic expression of the expected shortfall of quadratic portfolios with the benefit that moment based sensitivity measures can be derived from the analytic expression. The convergence rate of the analytic expression is fast - one iteration - for small closed integration domains, and slower for open integration domains when compared to the Monte Carlo integration method. The analytic formulas provide a theoretical framework for calculations in robust estimation, robust regression, outlier detection, design of experiments, and stochastic extensions of deterministic elliptical curves results. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:29 / 44
页数:16
相关论文
共 53 条
  • [1] On the coherence of expected shortfall
    Acerbi, C
    Tasche, D
    [J]. JOURNAL OF BANKING & FINANCE, 2002, 26 (07) : 1487 - 1503
  • [2] Nonparametric risk management and implied risk aversion
    Aït-Sahalia, Y
    Lo, AW
    [J]. JOURNAL OF ECONOMETRICS, 2000, 94 (1-2) : 9 - 51
  • [3] A truncated bivariate generalized Pareto distribution
    Ali, M. Masoom
    Nadarajah, Saralees
    [J]. COMPUTER COMMUNICATIONS, 2007, 30 (08) : 1926 - 1930
  • [4] [Anonymous], 2002, ADV FINANCE STOCHAST
  • [5] [Anonymous], 1993, Continuous Univariate Distributions, DOI DOI 10.1016/0167-9473(96)90015-8
  • [6] [Anonymous], 1981, STAT DISTRIBUTIONS S
  • [7] Multivariate truncated moments
    Arismendi, J. C.
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2013, 117 : 41 - 75
  • [8] A Monte Carlo multi-asset option pricing approximation for general stochastic processes
    Arismendi, Juan
    De Genaro, Alan
    [J]. CHAOS SOLITONS & FRACTALS, 2016, 88 : 75 - 99
  • [9] Coherent measures of risk
    Artzner, P
    Delbaen, F
    Eber, JM
    Heath, D
    [J]. MATHEMATICAL FINANCE, 1999, 9 (03) : 203 - 228
  • [10] NORMAL VARIANCE MEAN MIXTURES AND Z-DISTRIBUTIONS
    BARNDORFFNIELSEN, O
    KENT, J
    SORENSEN, M
    [J]. INTERNATIONAL STATISTICAL REVIEW, 1982, 50 (02) : 145 - 159