Collaborative Deep Forest Learning for Recommender Systems

被引:10
|
作者
Molaei, Soheila [1 ]
Havvaei, Amirhossein [1 ]
Zare, Hadi [1 ]
Jalili, Mahdi [2 ]
机构
[1] Univ Tehran, Dept Network Sci & Technol, Tehran 1417466191, Iran
[2] RMIT Univ, Sch Engn, Melbourne, Vic 3000, Australia
关键词
Feature extraction; Deep learning; Forestry; Data models; Collaboration; Recommender systems; Predictive models; social networks; deep learning; collaborative filtering; representational learning; MATRIX FACTORIZATION;
D O I
10.1109/ACCESS.2021.3054818
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Collaborative filtering (CF) is one of the most practical approaches on recommendation systems by predicting users' preferences for items based on the user-item interaction information. Besides the connections between users and items, social networks among users can provide auxiliary information to improve the performance of recommender systems. Here, we propose an end-to-end deep learning framework by learning latent social features to embed in a CF approach. First, representation learning is employed on the rating matrix to extract the latent social features. Then, a novel deep learning approach based on cascade tree forest is used in the recommendation process. Experiments on real-world datasets from different domains demonstrate that the proposed Collaborative Deep Forest Learning (CDFL) outperforms the state-of-the-art CF recommendation methods.
引用
收藏
页码:22053 / 22061
页数:9
相关论文
共 50 条
  • [41] Deep learning with the generative models for recommender systems: A survey
    Nahta, Ravi
    Chauhan, Ganpat Singh
    Meena, Yogesh Kumar
    Gopalani, Dinesh
    COMPUTER SCIENCE REVIEW, 2024, 53
  • [42] Collaborative Factorization for Recommender Systems
    Fan, Chaosheng
    Lan, Yanyan
    Guo, Jiafeng
    Lin, Zuoquan
    Cheng, Xueqi
    SIGIR'13: THE PROCEEDINGS OF THE 36TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH & DEVELOPMENT IN INFORMATION RETRIEVAL, 2013, : 949 - 952
  • [43] Collaborative tagging in recommender systems
    Ji, Ae-Ttie
    Yeon, Cheol
    Kim, Heung-Nam
    Jo, Geun-Sik
    AI 2007: ADVANCES IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2007, 4830 : 377 - 386
  • [44] Recommender Systems and Collaborative Filtering
    Ortega, Fernando
    Gonzalez-Prieto, Angel
    APPLIED SCIENCES-BASEL, 2020, 10 (20):
  • [45] Collaborative filtering recommender systems
    Ekstrand M.D.
    Riedl J.T.
    Konstan J.A.
    Foundations and Trends in Human-Computer Interaction, 2010, 4 (02): : 81 - 173
  • [46] On Parallelizing SGD for Pairwise Learning to Rank in Collaborative Filtering Recommender Systems
    Yagci, Murat
    Aytekin, Tevfik
    Gurgen, Fikret
    PROCEEDINGS OF THE ELEVENTH ACM CONFERENCE ON RECOMMENDER SYSTEMS (RECSYS'17), 2017, : 37 - 41
  • [47] Active Learning in Multi-Domain Collaborative Filtering Recommender Systems
    Guan, Xin
    Li, Chang-Tsun
    Guan, Yu
    33RD ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING, 2018, : 1351 - 1357
  • [48] Data productive collaborative filtering using deep learning based recommender model
    Prakash, K. Purna
    Krishna, M.
    Vijaya, M. Satya
    INTERNATIONAL CONFERENCE ON COMPUTER VISION AND MACHINE LEARNING, 2019, 1228
  • [49] DeepReco: Deep Learning Based Health Recommender System Using Collaborative Filtering
    Sahoo, Abhaya Kumar
    Pradhan, Chittaranjan
    Barik, Rabindra Kumar
    Dubey, Harishchandra
    COMPUTATION, 2019, 7 (02)
  • [50] Forest-based Deep Recommender
    Feng, Chao
    Lian, Defu
    Liu, Zheng
    Xie, Xing
    Wu, Le
    Chen, Enhong
    PROCEEDINGS OF THE 45TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '22), 2022, : 523 - 532