Collaborative Deep Forest Learning for Recommender Systems

被引:10
|
作者
Molaei, Soheila [1 ]
Havvaei, Amirhossein [1 ]
Zare, Hadi [1 ]
Jalili, Mahdi [2 ]
机构
[1] Univ Tehran, Dept Network Sci & Technol, Tehran 1417466191, Iran
[2] RMIT Univ, Sch Engn, Melbourne, Vic 3000, Australia
关键词
Feature extraction; Deep learning; Forestry; Data models; Collaboration; Recommender systems; Predictive models; social networks; deep learning; collaborative filtering; representational learning; MATRIX FACTORIZATION;
D O I
10.1109/ACCESS.2021.3054818
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Collaborative filtering (CF) is one of the most practical approaches on recommendation systems by predicting users' preferences for items based on the user-item interaction information. Besides the connections between users and items, social networks among users can provide auxiliary information to improve the performance of recommender systems. Here, we propose an end-to-end deep learning framework by learning latent social features to embed in a CF approach. First, representation learning is employed on the rating matrix to extract the latent social features. Then, a novel deep learning approach based on cascade tree forest is used in the recommendation process. Experiments on real-world datasets from different domains demonstrate that the proposed Collaborative Deep Forest Learning (CDFL) outperforms the state-of-the-art CF recommendation methods.
引用
收藏
页码:22053 / 22061
页数:9
相关论文
共 50 条
  • [31] Collaborative Social Metric Learning in Trust Network for Recommender Systems
    Kim, Taehan
    Chung, Wonzoo
    INTERNATIONAL JOURNAL ON SEMANTIC WEB AND INFORMATION SYSTEMS, 2023, 19 (01)
  • [32] Item Similarity Learning Methods for Collaborative Filtering Recommender Systems
    Xie, Feng
    Chen, Zhen
    Shang, Jiaxing
    Huang, Wenliang
    Li, Jun
    2015 IEEE 29TH INTERNATIONAL CONFERENCE ON ADVANCED INFORMATION NETWORKING AND APPLICATIONS (IEEE AINA 2015), 2015, : 896 - 903
  • [33] Deep variational models for collaborative filtering-based recommender systems
    Jesús Bobadilla
    Fernando Ortega
    Abraham Gutiérrez
    Ángel González-Prieto
    Neural Computing and Applications, 2023, 35 : 7817 - 7831
  • [34] Deep Variational Embedding Representation on Neural Collaborative Filtering Recommender Systems
    Bobadilla, Jesus
    Duenas, Jorge
    Gutierrez, Abraham
    Ortega, Fernando
    APPLIED SCIENCES-BASEL, 2022, 12 (09):
  • [35] A Comprehensive Survey of Recommender Systems Based on Deep Learning
    Zhou, Hongde
    Xiong, Fei
    Chen, Hongshu
    APPLIED SCIENCES-BASEL, 2023, 13 (20):
  • [36] DeepFair: Deep Learning for Improving Fairness in Recommender Systems
    Bobadilla, Jesus
    Lara-Cabrera, Raul
    Gonzalez-Prieto, Angel
    Ortega, Fernando
    INTERNATIONAL JOURNAL OF INTERACTIVE MULTIMEDIA AND ARTIFICIAL INTELLIGENCE, 2021, 6 (06): : 86 - 94
  • [37] Deep learning for recommender systems: A Netflix case study
    Steck, Harald
    Baltrunas, Linas
    Elahi, Ehtsham
    Liang, Dawen
    Raimond, Yves
    Basilico, Justin
    AI MAGAZINE, 2021, 42 (03) : 7 - 18
  • [38] A review on deep learning for recommender systems: challenges and remedies
    Zeynep Batmaz
    Ali Yurekli
    Alper Bilge
    Cihan Kaleli
    Artificial Intelligence Review, 2019, 52 : 1 - 37
  • [39] Deep variational models for collaborative filtering-based recommender systems
    Bobadilla, Jesus
    Ortega, Fernando
    Gutierrez, Abraham
    Gonzalez-Prieto, Angel
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (10): : 7817 - 7831
  • [40] A review on deep learning for recommender systems: challenges and remedies
    Batmaz, Zeynep
    Yurekli, Ali
    Bilge, Alper
    Kaleli, Cihan
    ARTIFICIAL INTELLIGENCE REVIEW, 2019, 52 (01) : 1 - 37