Dynamically Tunable Electromagnetically Induced Transparency in Graphene-Based Coupled Micro-ring Resonators

被引:23
|
作者
Zhou, Xuetong [1 ]
Zhang, Tian [1 ]
Yin, Xiang [1 ]
Chen, Lin [1 ]
Li, Xun [2 ]
机构
[1] Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Wuhan 430074, Peoples R China
[2] McMaster Univ, Dept Elect & Comp Engn, Hamilton, ON L8S 4K1, Canada
来源
IEEE PHOTONICS JOURNAL | 2017年 / 9卷 / 02期
基金
中国国家自然科学基金;
关键词
Coupled resonators; electromagnetically induced transparency (EIT); integrated optics; resonance; PLASMON-INDUCED TRANSPARENCY; OPTICAL ANALOG; COMPACT; DESIGN;
D O I
10.1109/JPHOT.2017.2690684
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A dynamically tunable electromagnetically induced transparency (EIT) system consisting of two coupled micro-ring resonators, one of which is embedded with a graphene layer, is proposed and numerically demonstrated. The effective refractive index of the graphene-based micro-ring resonator can be significantly tuned by varying the gate voltage applied on graphene, inducing significant modulation of the resonant wavelength of EIT transparency window over a wide spectral bandwidth. Typical tunability of the EIT resonance is approximately 1.62 nm/V around 1550 nm, which is much better than that based on a nanoelectromechanical EIT system. Such a configuration implies the possibility of constructing various optical devices toward realization of photon pulse trapping, optical modulation, and filtering on a chip.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Electromagnetically induced transparency-like effect in the optimized silicon micro ring resonators
    Xue, C.-Y. (xuechenyang@nuc.edu.cn), 1600, Chinese Optical Society (43):
  • [32] Dynamically tunable electromagnetically induced transparency in a terahertz hybrid metamaterial
    Liu, Tingting
    Wang, Huaixing
    Liu, Yong
    Xiao, Longsheng
    Zhou, Chaobiao
    Xu, Chen
    Xiao, Shuyuan
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2018, 104 : 229 - 232
  • [33] Dynamically tunable implementation of electromagnetically induced transparency based on bright and dark modes coupling graphene-nanostrips
    Shu, Chang
    Chen, Qing-Guo
    Mei, Jin-Shuo
    Yin, Jing-Hua
    OPTICS COMMUNICATIONS, 2018, 420 : 65 - 71
  • [34] Polarization-Controlled Dynamically Tunable Electromagnetically Induced Transparency-Like Effect Based on Graphene Metasurfaces
    Tang, Bin
    Jia, Zhongpeng
    Huang, Li
    Su, Jiangbin
    Jiang, Chun
    IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2021, 27 (01)
  • [35] Dynamically tunable electromagnetically induced transparency analogy in terahertz metamaterial
    Liu, Chenxi
    Liu, Peiguo
    Bian, Lian
    Zhou, Qihui
    Li, Gaosheng
    Liu, Hanqin
    OPTICS COMMUNICATIONS, 2018, 410 : 17 - 24
  • [36] Dynamically Tunable Electromagnetically Induced Transparency-Like Effect in Terahertz Metamaterial Based on Graphene Cross Structures
    Chen, Mingming
    Xiao, Zhongyin
    Lv, Fei
    Cui, Zhentao
    Xu, Qidi
    IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2022, 28 (01)
  • [37] Simulation of dynamically tunable and switchable electromagnetically induced transparency analogue based on metal-graphene hybrid metamaterial
    Chen, Mingming
    Xiao, Zhongyin
    Lu, Xiaojie
    Lv, Fei
    Zhou, Yongjin
    CARBON, 2020, 159 : 273 - 282
  • [38] Dynamically tunable angular optical transparency induced by photonic topological transition in graphene-based hyperbolic metamaterials
    Su, Zengping
    Wang, Yueke
    OPTICAL MATERIALS, 2020, 107
  • [39] Tunable terahertz electromagnetically induced transparency based on a complementary graphene metamaterial
    Zhang, Huiyun
    Zhang, Xiaoqiuyan
    Cao, Yanyan
    Zeng, Beibei
    Zhou, Mingdong
    Zhang, Yuping
    MATERIALS RESEARCH EXPRESS, 2017, 4 (01):
  • [40] Graphene-based tunable plasmon induced transparency in gold strips
    Habib, Mohsin
    Rashed, Alireza Rahimi
    Ozbay, Ekmel
    Caglayan, Humeyra
    OPTICAL MATERIALS EXPRESS, 2018, 8 (04): : 1069 - 1074