Controlled generation of ferromagnetic martensite from paramagnetic austenite in AISI 316L austenitic stainless steel

被引:17
作者
Menendez, E. [2 ,3 ]
Sort, J. [1 ,2 ]
Liedke, M. O. [3 ]
Fassbender, J. [3 ]
Surinach, S. [2 ]
Baro, M. D. [2 ]
Nogues, J. [1 ,4 ]
机构
[1] Univ Autonoma Barcelona, ICREA, Bellaterra 08193, Spain
[2] Univ Autonoma Barcelona, Dept Fis, Bellaterra 08193, Spain
[3] Forschungszentrum Dresden Rossendorf, Inst Ion Beam Phys & Mat Res, D-01314 Dresden, Germany
[4] Univ Autonoma Barcelona, Inst Catala Nanotecnol, Bellaterra 08193, Spain
关键词
DEFORMATION-INDUCED TRANSFORMATION; STRAIN-RATE; MAGNETIC MEASUREMENTS; INDUCED PLASTICITY; EVOLUTION; BEHAVIOR; MODEL; STATE; TRIP;
D O I
10.1557/JMR.2009.0067
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The strain-induced austenite (gamma) to martensite (alpha') transformation in AISI 316L austenitic stainless steel, either in powders or bulk specimens, has been investigated. The phase transformation is accomplished using either ball-milling processes (in powders)dynamic approach-or by uniaxial compression procedures (in bulk specimens)-quasistatic approach. Remarkably, an increase in the loading rate causes opposite effects in each case: (i) it increases the amount of transformed of alpha' in ball-milling procedures. but (ii) it decreases the amount of alpha' in pressed samples. Both the microstructural changes (e.g., crystallite size refinement, microstrains, or type of stacking faults) in the parent gamma phase and the role of the concomitant temperature rise during deformation seem to be responsible for these opposite trends. Furthermore, the results show the correlation between the gamma -> alpha' phase transformation and the development of magnetism and enhanced hardness.
引用
收藏
页码:565 / 573
页数:9
相关论文
共 50 条
  • [31] Fatigue crack growth in interstitially hardened AISI 316L stainless steel
    Hsu, J. -P.
    Wang, D.
    Kahn, H.
    Ernst, F.
    Michal, G. M.
    Heuer, A. H.
    INTERNATIONAL JOURNAL OF FATIGUE, 2013, 47 : 100 - 105
  • [32] Microstructures generated in AISI 316L stainless steel by Vickers and Berkovich indentations
    Grabco, Daria
    Shikimaka, Olga
    Pyrtsac, Constantin
    Prisacaru, Andrian
    Barbos, Zinaida
    Bivol, Mihaela
    Alexandrov, Sergei
    Vilotic, Dragisha
    Vilotic, Marko
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2021, 805
  • [33] Microstructures generated in AISI 316L stainless steel by Vickers and Berkovich indentations
    Grabco, Daria
    Shikimaka, Olga
    Pyrtsac, Constantin
    Prisacaru, Andrian
    Barbos, Zinaida
    Bivol, Mihaela
    Alexandrov, Sergei
    Vilotic, Dragisha
    Vilotic, Marko
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2021, 805
  • [34] Stability of austenitic 316L steel against martensite formation during cyclic straining
    Man, J.
    Obrtlik, K.
    Petrenec, M.
    Beran, P.
    Smaga, M.
    Weidner, A.
    Dluhos, J.
    Kruml, T.
    Biermann, H.
    Eifler, D.
    Polak, J.
    11TH INTERNATIONAL CONFERENCE ON THE MECHANICAL BEHAVIOR OF MATERIALS (ICM11), 2011, 10 : 1279 - 1284
  • [35] Tailoring the microstructure and mechanical properties of AISI 316L austenitic stainless steel via cold rolling and reversion annealing
    Kheiri, Sara
    Mirzadeh, Hamed
    Naghizadeh, Meysam
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2019, 759 : 90 - 96
  • [36] In situ analysis of cryogenic strain of AISI 316L stainless steel using synchrotron radiation
    Crivoi, Maicon Rogerio
    Hoyos, John Jairo
    Izumi, Marcel Tadashi
    Marcolino de Aguiar, Denilson Jose
    Namur, Ricardo Sanson
    Terasawa, Ana Luisa
    Cintho, Osvaldo Mitsuyuki
    CRYOGENICS, 2020, 105
  • [37] Enhanced fatigue properties of nanostructured austenitic SUS 316L stainless steel
    Ueno, H.
    Kakihata, K.
    Kaneko, Y.
    Hashimoto, S.
    Vinogradov, A.
    ACTA MATERIALIA, 2011, 59 (18) : 7060 - 7069
  • [38] Microstructures generated in AISI 316L stainless steel by Vickers and Berkovich indentations
    Grabco, Daria
    Shikimaka, Olga
    Pyrtsac, Constantin
    Prisacaru, Andrian
    Barbos, Zinaida
    Bivol, Mihaela
    Alexandrov, Sergei
    Vilotic, Dragisha
    Vilotic, Marko
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2021, 805
  • [39] Dual role of hydrogen in fatigue life of 316L austenitic stainless steel
    Zhao, Chenyu
    Deng, Lisheng
    Wu, Shuang
    Wu, Weijie
    Peng, Yawei
    Wang, Xiaowei
    Jiang, Yong
    Gong, Jianming
    INTERNATIONAL JOURNAL OF FATIGUE, 2025, 198
  • [40] Prediction of Surface Microstructure, Grain Size, Martensite Content, and Microhardness of 316L Austenitic Stainless Steel in Surface Mechanical Grinding Treatment Process
    Yang, Chongwen
    Jiang, Xinli
    Zhang, Wenqian
    Wang, Xuelin
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2024, 33 (17) : 9112 - 9125