Monotone iterative technique for first order impulsive difference equations with periodic boundary conditions

被引:36
作者
He, ZM [1 ]
Zhang, XM [1 ]
机构
[1] Cent S Univ, Dept Appl Math, Changsha 410083, Hunan, Peoples R China
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
impulsive difference equation; periodic boundary condition; upper and lower solution; monotone iterative technique;
D O I
10.1016/j.amc.2003.08.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper investigates the first order impulsive difference equations with periodic boundary conditions. By establishing two comparison results and using the method of upper and lower solutions and the monotone iterative technique, criteria on the existence of minimal and maximal solutions are obtained. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:605 / 620
页数:16
相关论文
共 17 条
[1]  
[Anonymous], J MATH PHYS SCI
[2]  
[Anonymous], 1980, FIXED POINT THEOREMS
[3]   Comparison results for n-th order periodic difference equations. [J].
Cabada, A ;
Otero-Espinar, V .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 47 (04) :2395-2406
[4]   A new maximum principle for impulsive first-order problems [J].
Franco, D ;
Nieto, JJ .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1998, 37 (05) :1607-1616
[5]  
HENDERSON J., 1997, Nonlinear Stud., V4, P29
[6]  
Kelley W. G., 1991, Difference equations: An introduction with applications
[7]  
Ladde GS., 1985, MONOTONE ITERATIVE T
[8]   REMARKS ON 1ST AND 2ND ORDER PERIODIC BOUNDARY-VALUE-PROBLEMS [J].
LAKSHMIKANTHAM, V ;
LEELA, S .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1984, 8 (03) :281-287
[9]  
Lakshmikantham V., 1989, Series In Modern Applied Mathematics, V6
[10]   Basic theory for nonresonance impulsive periodic problems of first order [J].
Nieto, JJ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 205 (02) :423-433