Age-hardening and age-softening in nanocrystalline Mg-Gd-Y-Zr alloy

被引:29
作者
Yu, Shilun [1 ]
Wan, Yingchun [1 ,2 ]
Liu, Chuming [1 ,3 ]
Wang, Jian [4 ]
机构
[1] Cent S Univ, Sch Mat Sci & Engn, Changsha 410083, Hunan, Peoples R China
[2] Cent S Univ, Sch Met & Environm, Changsha 410083, Hunan, Peoples R China
[3] Cent S Univ, State Key Lab Powder Met, Changsha 410083, Hunan, Peoples R China
[4] Univ Nebraska, Mech & Mat Engn, Lincoln, NE 68588 USA
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Mg-Gd-Y-Zr alloy; Nanocrystalline; Age-hardening; Age-softening; Segregation; MAGNESIUM ALLOY; TENSILE PROPERTIES; THERMAL-STABILITY; SEGREGATION; PRECIPITATION; STRENGTH;
D O I
10.1016/j.matchar.2019.109841
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Coarse-grained Mg-Gd-Y-Zr alloys are typical age-hardenable alloys. Here we report temperature-dependent age hardening and age-softening effects in nanocrystalline (NC) Mg-Gd-Y-Zr alloy. NC Mg-Gd-Y-Zr alloy can be strengthened as ageing at 175 degrees C via intergranular solute segregation hardening or softened as ageing at 200 and 225 degrees C due to depletion in intragranular solute atoms accompanied with formation and growth of intergranular precipitates. Microstructural characterizations reveal that solute segregation takes place at grain boundaries (GBs) of nanocrystalline alloy during ageing, stabilizing nanograins and strengthening the alloy. However, ageing at high temperature and/or over-time promotes fast formation of beta phases and depletion in intragranular solute atoms, weakening solid solution strengthening effect and leading to age-softening. Thus, age-hardening and age-softening in nanocrystalline alloy are ascribed to the competition between intergranular solute segregation hardening and weakened intragranular solid solution strengthening.
引用
收藏
页数:7
相关论文
共 36 条
  • [1] Grain boundary segregation induced strengthening of an ultrafine-grained austenitic stainless steel
    Abramova, M. M.
    Enikeev, N. A.
    Valiev, R. Z.
    Etienne, A.
    Radiguet, B.
    Ivanisenko, Y.
    Sauvage, X.
    [J]. MATERIALS LETTERS, 2014, 136 : 349 - 352
  • [2] Enhancing plastic deformability of Mg and its alloys-A review of traditional and nascent developments
    Alaneme, Kenneth Kanayo
    Okotete, Eloho Anita
    [J]. JOURNAL OF MAGNESIUM AND ALLOYS, 2017, 5 (04) : 460 - 475
  • [3] Short-circuit diffusion in an ultrafine-grained copper-zirconium alloy produced by equal channel angular pressing
    Amouyal, Y.
    Divinski, S. V.
    Estrin, Y.
    Rabkin, E.
    [J]. ACTA MATERIALIA, 2007, 55 (17) : 5968 - 5979
  • [4] Aging characteristics and high temperature tensile properties of Mg-Gd-Y-Zr alloys
    Anyanwu, IA
    Kamado, S
    Kojima, Y
    [J]. MATERIALS TRANSACTIONS, 2001, 42 (07) : 1206 - 1211
  • [5] A rationale for the strong dependence of mechanical twinning on grain size
    Barnett, M. R.
    [J]. SCRIPTA MATERIALIA, 2008, 59 (07) : 696 - 698
  • [6] Bettles C, 2012, WOODHEAD PUBL MATER, pXIII
  • [7] IMPURITY-DRAG EFFECT IN GRAIN BOUNDARY MOTION
    CAHN, JW
    [J]. ACTA METALLURGICA, 1962, 10 (SEP): : 789 - &
  • [8] Microstructural evolution, strengthening and thermal stability of an ultrafine-grained Al-Cu-Mg alloy
    Chen, Ying
    Gao, Nong
    Sha, Gang
    Ringer, Simon P.
    Starink, Marco J.
    [J]. ACTA MATERIALIA, 2016, 109 : 202 - 212
  • [9] GDMG5 - A COMPLEX STRUCTURE WITH A LARGE CUBIC CELL
    FORNASINI, ML
    MANFRINETTI, P
    GSCHNEIDNER, KA
    [J]. ACTA CRYSTALLOGRAPHICA SECTION C-CRYSTAL STRUCTURE COMMUNICATIONS, 1986, 42 : 138 - 141
  • [10] Precipitation in a Mg-10Gd-3Y-0.4Zr (wt.%) alloy during isothermal ageing at 250°C
    He, S. M.
    Zeng, X. Q.
    Peng, L. M.
    Gao, X.
    Nie, J. F.
    Ding, W. J.
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2006, 421 (1-2) : 309 - 313