Energy shift between two relativistic laser pulses copropagating in plasmas

被引:3
|
作者
Yang, S. L. [1 ,2 ]
Zhou, C. T. [1 ,2 ,3 ,4 ,5 ]
Huang, T. W. [3 ]
Ju, L. B. [5 ,6 ]
He, X. T. [1 ,2 ,5 ]
机构
[1] Peking Univ, Ctr Appl Phys & Technol, HEDPS, Beijing 100871, Peoples R China
[2] Peking Univ, Sch Phys, Beijing 100871, Peoples R China
[3] Shenzhen Univ, Coll Optoelect Engn, Shenzhen 518060, Peoples R China
[4] Shenzhen Technol Univ, Coll New Energy & New Mat, Shenzhen 518118, Peoples R China
[5] Inst Appl Phys & Computat Math, Beijing 100094, Peoples R China
[6] China Acad Engn Phys, Grad Sch, Beijing 100088, Peoples R China
基金
中国国家自然科学基金; 英国工程与自然科学研究理事会;
关键词
SPATIAL SOLITON-INTERACTIONS; UNDERDENSE PLASMAS; INTERACTION FORCES; OPTICAL FILAMENTS; INTENSE; BEAMS; FIBERS; MEDIA; LIGHT;
D O I
10.1103/PhysRevA.95.053813
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The interactive dynamics of two relativistic laser beams copropagating in underdense plasmas is studied using a coupled model equation for the relativistic laser propagation. It is shown that the relative phase difference between the two laser pulses plays a significant role in their interaction processes. When the relative phase varies, the two laser beams display different features, such as attraction, repulsion, and energy shift. In particular, energy flow from the phase-advanced beam to the spot domain of the phase-delayed beam is observed when the relative phase difference is between zero and pi. When the relative phase is larger than pi/2, repulsion is dominant and the interaction gradually becomes weak. When the relative phase difference is smaller than pi/2, attraction becomes dominant and, as the phase difference decreases, the phase-advanced beam shifts most of its energy into the spot domain of the phase-delayed beam. These conclusions are verified by our three-dimensional particle-in-cell simulations. This provides an efficient way to manipulate the energy distribution of relativistically intense laser pulses in plasmas by adjusting their relative phase.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Electron acceleration induced by interaction of two relativistic laser pulses in underdense plasmas
    Huang, T. W.
    Zhou, C. T.
    Bai, R. X.
    Ju, L. B.
    Jiang, K.
    Long, T. Y.
    Zhang, H.
    Wu, S. Z.
    Ruan, S. C.
    PHYSICAL REVIEW E, 2018, 98 (05)
  • [2] Ion energy distributions in laser-produced plasmas with two collinear pulses
    Apinaniz, Jon I.
    Gordillo-Vazquez, Francisco J.
    Martinez, Roberto
    PLASMA SOURCES SCIENCE & TECHNOLOGY, 2012, 21 (01)
  • [3] Self-channelling of relativistic laser pulses in large-scale underdense plasmas
    Naseri, N.
    Bochkarev, S. G.
    Rozmus, W.
    PHYSICS OF PLASMAS, 2010, 17 (03)
  • [4] Relativistic laser piston model: Ponderomotive ion acceleration in dense plasmas using ultraintense laser pulses
    Schlegel, T.
    Naumova, N.
    Tikhonchuk, V. T.
    Labaune, C.
    Sokolov, I. V.
    Mourou, G.
    PHYSICS OF PLASMAS, 2009, 16 (08)
  • [5] Spatiotemporal evolution of high-power relativistic laser pulses in electron-positron-ion plasmas
    Sharma, A.
    Kourakis, I.
    Shukla, P. K.
    PHYSICAL REVIEW E, 2010, 82 (01):
  • [6] Relativistic laser plasmas for novel radiation sources
    Pukhov, A.
    Baeva, T.
    an der Bruegge, D.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2009, 175 : 25 - 33
  • [7] Physics of colliding laser pulses in underdense plasmas
    Faure, Jerome
    Rechatin, Clement
    Ben-Ismail, Ahmed
    Lim, Jaeku
    Davoine, Xavier
    Lefebvre, Erik
    Malka, Victor
    COMPTES RENDUS PHYSIQUE, 2009, 10 (2-3) : 148 - 158
  • [8] Subcycle terahertz field waveforms clocked by attosecond high-harmonic pulses from relativistic laser plasmas
    Glek, P. B.
    Zheltikov, A. M.
    JOURNAL OF APPLIED PHYSICS, 2022, 131 (10)
  • [9] Laser absorption by overdense plasmas in the relativistic regime
    Davies, J. R.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2009, 51 (01)
  • [10] Visualization of relativistic laser pulses in underdense plasma
    Schwab, M. B.
    Siminos, E.
    Heinemann, T.
    Ullmann, D.
    Karbstein, F.
    Kuschel, S.
    Saevert, A.
    Yeung, M.
    Hollatz, D.
    Seidel, A.
    Cole, J.
    Mangles, S. P. D.
    Hidding, B.
    Zepf, M.
    Skupin, S.
    Kaluza, M. C.
    PHYSICAL REVIEW ACCELERATORS AND BEAMS, 2020, 23 (02):