Well-posedness of Korteweg-de Vries-Benjamin Bona Mahony equation on a finite domain

被引:1
作者
Li, Jie [1 ]
Liu, Kangsheng [1 ]
机构
[1] Zhejiang Univ, Dept Math, Hangzhou, Zhejiang, Peoples R China
关键词
Korteweg-de Vries-Benjamin Bona; Mahony equation; Finite domain; Well-posedness; Nonhomogeneous boundary; Semigroup; Nonlinear interpolation; UNIQUE CONTINUATION; WAVES; LONG;
D O I
10.1016/j.jmaa.2017.02.038
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the Korteweg-de Vries-Benjamin Bona Mahony equation on a finite domain with initial value and nonhomogeneous boundary conditions. This particular problem arises from the phenomenon of long wave with small amplitude in fluid. We get the global well-posedness of this system. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:611 / 633
页数:23
相关论文
共 18 条
[1]  
[Anonymous], NONLINEAR EVOLUTION
[2]  
[Anonymous], 2006, CBMS REGIONAL C SERI, DOI DOI 10.1090/EBMS/106
[3]   MODEL EQUATIONS FOR LONG WAVES IN NONLINEAR DISPERSIVE SYSTEMS [J].
BENJAMIN, TB ;
BONA, JL ;
MAHONY, JJ .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1972, 272 (1220) :47-+
[4]   SOLUTIONS OF KORTEWEG-DEVRIES EQUATION IN FRACTIONAL ORDER SOBOLEV SPACES [J].
BONA, J ;
SCOTT, R .
DUKE MATHEMATICAL JOURNAL, 1976, 43 (01) :87-99
[5]   A non-homogeneous boundary-value problem for the Korteweg-de Vries equation posed on a finite domain II [J].
Bona, Jerry L. ;
Sun, Shu Ming ;
Zhang, Bing-Yu .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 247 (09) :2558-2596
[6]   Sharp well-posedness results for the BBM equation [J].
Bona, Jerry L. ;
Tzvetkov, Nikolay .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2009, 23 (04) :1241-1252
[7]   A nonhomogeneous boundary-value problem for the Korteweg-de Vries equation posed on a finite domain [J].
Bona, JL ;
Sun, SM ;
Zhang, BY .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2003, 28 (7-8) :1391-1436
[8]  
Brezis H., 2011, FUNCTIONAL ANAL SOBO
[9]   The generalized Korteweg-de Vries equation on the half line [J].
Colliander, JE ;
Kenig, CE .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2002, 27 (11-12) :2187-2266
[10]   Unique continuation for the Benjamin-Bona-Mahony [J].
Davila, Mario ;
Perla Menzala, Gustavo .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 1998, 5 (03) :367-382