TRIBONACCI NUMBERS WITH TWO BLOCKS OF REPDIGITS

被引:8
作者
Bravo, Eric F. [1 ]
Bravo, Jhon J. [1 ]
机构
[1] Univ Cauca, Dept Matemat, Calle 5 4-70, Popayan, Colombia
关键词
Tribonacci number; repdigit; linear form in logarithms;
D O I
10.1515/ms-2017-0466
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Tribonacci sequence is a generalization of the Fibonacci sequence which starts with 0, 0, 1 and each term afterwards is the sum of the three preceding terms. Here, we show that the only Tribonacci numbers that are concatenations of two repdigits are 13, 24, 44, 81. This paper continues a previous work that searched for Fibonacci numbers which are concatenations of two repdigits. (C) 2021 Mathematical Institute Slovak Academy of Sciences
引用
收藏
页码:267 / 274
页数:8
相关论文
共 15 条
[1]   Fibonacci numbers which are concatenations of two repdigits [J].
Alahmadi, Adel ;
Altassan, Alaa ;
Luca, Florian ;
Shoaib, Hatoon .
QUAESTIONES MATHEMATICAE, 2021, 44 (02) :281-290
[2]   EQUATIONS 3X2-2=Y2 AND 8X2-7=Z2 [J].
BAKER, A ;
DAVENPOR.H .
QUARTERLY JOURNAL OF MATHEMATICS, 1969, 20 (78) :129-&
[3]  
Banks WD, 2005, J INTEGER SEQ, V8
[4]   POWERS OF TWO AS SUMS OF TWO k-FIBONACCI NUMBERS [J].
Bravo, Jhon J. ;
Gomez, Carlos A. ;
Luca, Florian .
MISKOLC MATHEMATICAL NOTES, 2016, 17 (01) :85-100
[5]   On a conjecture about repdigits in k-generalized Fibonacci sequences [J].
Bravo, Jhon J. ;
Luca, Florian .
PUBLICATIONES MATHEMATICAE-DEBRECEN, 2013, 82 (3-4) :623-639
[6]   Classical and modular approaches to exponential Diophantine equations I. Fibonacci and Lucas perfect powers [J].
Bugeaud, Yann ;
Mignotte, Maurice ;
Siksek, Samir .
ANNALS OF MATHEMATICS, 2006, 163 (03) :969-1018
[7]   A generalization of a theorem of Baker and Davenport [J].
Dujella, A ;
Petho, A .
QUARTERLY JOURNAL OF MATHEMATICS, 1998, 49 (195) :291-306
[8]  
Luca F., 2000, Portugaliae Math, V57, P243
[9]  
Marques D, 2015, UTILITAS MATHEMATICA, V98, P23
[10]   ON TERMS OF LINEAR RECURRENCE SEQUENCES WITH ONLY ONE DISTINCT BLOCK OF DIGITS [J].
Marques, Diego ;
Togbe, Alain .
COLLOQUIUM MATHEMATICUM, 2011, 124 (02) :145-155