Gap vortex solitons in periodic media with quadratic nonlinearity

被引:12
作者
Hang, Chao [1 ]
Konotop, Vladimir V. [1 ,2 ]
Malomed, Boris A. [3 ]
机构
[1] Univ Lisbon, Ctr Fis Teor & Computac, P-1649003 Lisbon, Portugal
[2] Univ Lisbon, Fac Ciencias, Dept Fis, P-1749016 Lisbon, Portugal
[3] Tel Aviv Univ, Fac Engn, Sch Elect Engn, Dept Phys Elect, IL-69978 Tel Aviv, Israel
来源
PHYSICAL REVIEW A | 2009年 / 80卷 / 02期
关键词
CUBIC-QUINTIC MODEL; OPTICAL SOLITONS; PHOTONIC LATTICES; SPINNING SOLITONS; WAVE VORTICES; BEAMS; EXCITATION; POTENTIALS; DYNAMICS; COLLAPSE;
D O I
10.1103/PhysRevA.80.023824
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We explore the existence and stability of two-dimensional spatial gap solitons with embedded vorticity in a bulk medium with the quadratic (chi((2))) nonlinearity and a transverse grating represented by periodic modulation of the refractive index. Gap-vortex solitons (GVSs) can be found in total gaps of the underlying spectra of the fundamental-frequency and second-harmonic waves. We demonstrate the existence of a family of stable GVSs, which are built as four-peak complexes, in the lowest total gap. We also consider dynamical effects, such as self-trapping of GVSs from input beams, and delocalization transitions.
引用
收藏
页数:7
相关论文
共 56 条
[11]   Optical solitons due to quadratic nonlinearities: from basic physics to futuristic applications [J].
Buryak, AV ;
Di Trapani, P ;
Skryabin, DV ;
Trillo, S .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 370 (02) :63-235
[12]   SELF-TRAPPING OF OPTICAL BEAMS [J].
CHIAO, RY ;
GARMIRE, E ;
TOWNES, CH .
PHYSICAL REVIEW LETTERS, 1964, 13 (15) :479-&
[13]   One-dimensional delocalizing transitions of matter waves in optical lattices [J].
Cruz, H. A. ;
Brazhnyi, V. A. ;
Konotop, V. V. ;
Salerno, M. .
PHYSICA D-NONLINEAR PHENOMENA, 2009, 238 (15) :1372-1387
[14]   Three-dimensional spinning solitons in dispersive media with the cubic-quintic nonlinearity [J].
Desyatnikov, A ;
Maimistov, A ;
Malomed, B .
PHYSICAL REVIEW E, 2000, 61 (03) :3107-3113
[15]   Stable counter-rotating vortex pairs in saturable media [J].
Desyatnikov, Anton S. ;
Mihalache, Dumitru ;
Mazilu, Dumitru ;
Malomed, Boris A. ;
Lederer, Falk .
PHYSICS LETTERS A, 2007, 364 (3-4) :231-234
[16]   Two-dimensional solitons with hidden and explicit vorticity in bimodal cubic-quintic media [J].
Desyatnikov, AS ;
Mihalache, D ;
Mazilu, D ;
Malomed, BA ;
Denz, C ;
Lederer, F .
PHYSICAL REVIEW E, 2005, 71 (02)
[17]   Stabilization of two-dimensional solitons and vortices against supercritical collapse by lattice potentials [J].
Driben, R. ;
Malomed, B. A. .
EUROPEAN PHYSICAL JOURNAL D, 2008, 50 (03) :317-323
[18]   Cubic-quintic solitons in the checkerboard potential [J].
Driben, Rodislav ;
Malomed, Boris A. ;
Gubeskys, Arthur ;
Zyss, Joseph .
PHYSICAL REVIEW E, 2007, 76 (06)
[19]   Two-dimensional optical lattice solitons [J].
Efremidis, NK ;
Hudock, J ;
Christodoulides, DN ;
Fleischer, JW ;
Cohen, O ;
Segev, M .
PHYSICAL REVIEW LETTERS, 2003, 91 (21)
[20]   OPTICAL SOLITONS IN MEDIA WITH A QUADRATIC NONLINEARITY [J].
Etrich, Christoph ;
Lederer, Falk ;
Malomed, Boris A. ;
Peschel, Thomas ;
Peschel, Ulf .
PROGRESS IN OPTICS, VOL 41, 2000, 41 :483-568