Probability-based Dynamic Time Warping and Bag-of-Visual-and-Depth-Words for Human Gesture Recognition in RGB-D

被引:34
作者
Hernandez-Vela, Antonio [1 ,2 ]
Angel Bautista, Miguel [1 ,2 ]
Perez-Sala, Xavier [2 ,3 ,4 ]
Ponce-Lopez, Victor [1 ,2 ,5 ]
Escalera, Sergio [1 ,2 ]
Baro, Xavier [2 ,5 ]
Pujol, Oriol [1 ,2 ]
Angulo, Cecilio [4 ]
机构
[1] Univ Barcelona, Dept MAIA, E-08007 Barcelona, Spain
[2] Comp Vis Ctr, Barcelona 08193, Spain
[3] Fundacio Privada St Antoni Abat, Vilanova I La Geltru 08800, Spain
[4] UPC BarcelonaTECH, Vilanova I La Geltru 08800, Spain
[5] Univ Oberta Catalunya, EIMT IN3, Barcelona 08018, Spain
关键词
RGB-D; Bag-of-Words; Dynamic Time Warping; Human Gesture Recognition;
D O I
10.1016/j.patrec.2013.09.009
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a methodology to address the problem of human gesture segmentation and recognition in video and depth image sequences. A Bag-of-Visual-and-Depth-Words (BoVDW) model is introduced as an extension of the Bag-of-Visual-Words (BoVW) model. State-of-the-art RGB and depth features, including a newly proposed depth descriptor, are analysed and combined in a late fusion form. The method is integrated in a Human Gesture Recognition pipeline, together with a novel probability-based Dynamic Time Warping (PDTW) algorithm which is used to perform prior segmentation of idle gestures. The proposed DTW variant uses samples of the same gesture category to build a Gaussian Mixture Model driven probabilistic model of that gesture class. Results of the whole Human Gesture Recognition pipeline in a public data set show better performance in comparison to both standard BoVW model and DTW approach. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:112 / 121
页数:10
相关论文
共 26 条
[1]  
Aldoma A., 2011, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), P585, DOI 10.1109/ICCVW.2011.6130296
[2]  
[Anonymous], 2013, Consumer Depth Cameras for Computer Vision
[3]  
[Anonymous], 2011, Cvpr, DOI DOI 10.1109/CVPR.2011.5995316
[4]  
Biswas K. K., 2011, 2011 5th International Conference on Automation, Robotics and Applications (ICARA 2011), P100, DOI 10.1109/ICARA.2011.6144864
[5]  
Bo LF, 2011, IEEE INT C INT ROBOT, P821, DOI 10.1109/IROS.2011.6048717
[6]  
Csurka G., 2004, WORKSH STAT LEARN CO, V1, P1, DOI DOI 10.1234/12345678
[7]   Histograms of oriented gradients for human detection [J].
Dalal, N ;
Triggs, B .
2005 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 1, PROCEEDINGS, 2005, :886-893
[8]  
Doliotis P., 2011, Proceedings of the 4th International Conference on PErvasive Technologies Related to Assistive Environments-PETRA '11, P1
[9]  
Girshick R, 2011, IEEE I CONF COMP VIS, P415, DOI 10.1109/ICCV.2011.6126270
[10]  
Hampapur A., 2005, IEEE Signal Processing Magazine, V22, P38, DOI 10.1109/MSP.2005.1406476