Use of computer modeling for defect engineering in Czochralski silicon growth

被引:0
作者
Artemyev, V. [1 ]
Smirnov, A. [1 ,2 ]
Kalaev, V. [1 ,2 ]
Mamedov, V. [2 ]
Sid'ko, A. [2 ]
Wejrzanowski, T. [3 ]
Grybczuk, M. [3 ]
Dold, P. [4 ]
Kunert, R. [4 ]
机构
[1] STR Grp Inc, 64 Bolshoi Sampsonievskii Pr,Bldg E,Off 605, St Petersburg 194044, Russia
[2] Soft Impact Ltd, 64 Bolshoi Sampsonievskii Pr,Bldg E,Off 603, St Petersburg 194044, Russia
[3] Warsaw Univ Technol, Fac Mat Sci & Engn, Woloska 141, PL-02507 Warsaw, Poland
[4] Fraunhofer Ctr Silicon Photovolta CSP, Otto Eissfeldt Str 12, D-06120 Halle, Germany
来源
JOURNAL OF POWER TECHNOLOGIES | 2019年 / 99卷 / 02期
关键词
Czochralski silicon growth; structure loss; dislocation density; DISLOCATION; CRYSTAL; CZ; GENERATION; DYNAMICS;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The yield and quality of silicon wafers are mostly determined by defects, including grain boundaries, dislocations, vacancies, interstitials, and vacancy and oxygen clusters. Active generation and multiplication of dislocations during Czochralski monosilicon crystal growth is almost always followed by a transition to multicrystalline material and is called structure loss. Possible factors in structure loss are related to high thermal stresses, fluctuations of local crystallization rate caused by melt flow turbulence, melt undercooling and incorporation of solid particles from the melt into the crystal. Experimental analysis of dislocation density distributions in grown crystals contributes to an understanding of the key reasons for structure loss: particle incorporation at the crystallization front and strong fluctuations of crystallization rate with temporal remelting. Comparison of experimental dislocation density measurements and modeling results calculated using the Alexander-Haasen model showed good agreement for silicon samples. The Alexander-Haasen model provides reasonably accurate results for dislocation density accompanying structure loss phenomena and can be used to predict dislocation density and residual stresses in multicrystalline Czochralski silicon ingots, which are grown for the purpose of manufacturing polysilicon rods for Siemens reactors and silicon construction elements.
引用
收藏
页码:163 / 169
页数:7
相关论文
共 18 条
[1]  
Alexander H., 1969, SOLID STATE PHYS, V22, P27, DOI DOI 10.1016/S0081-1947(08)60031-4
[2]  
[Anonymous], 2017, CGSIM FLOW MOD THEOR
[3]  
[Anonymous], 2018, PHOTOVOLTAICS REPORT
[4]   Modeling of dislocation dynamics in germanium Czochralski growth [J].
Artemyev, V. V. ;
Smirnov, A. D. ;
Kalaev, V. V. ;
Mamedov, V. M. ;
Sidko, A. P. ;
Podkopaev, O. I. ;
Kravtsova, E. D. ;
Shimansky, A. F. .
JOURNAL OF CRYSTAL GROWTH, 2017, 468 :443-447
[5]  
Erofeev V. N., SOVIET PHYS JETP, V33
[6]   Highly efficient and stable implementation of the Alexander-Haasen model for numerical analysis of dislocation in crystal growth [J].
Gao, B. ;
Nakano, S. ;
Kakimoto, K. .
JOURNAL OF CRYSTAL GROWTH, 2013, 369 :32-37
[7]   Generation of dislocation glide loops in Czochralski silicon [J].
Giannattasio, A ;
Senkader, S ;
Falster, RJ ;
Wilshaw, PR .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2002, 14 (48) :12981-12987
[8]   Crystal twisting in Cz Si growth [J].
Kalaev, Vladimir ;
Sattler, Andreas ;
Kadinski, Lev .
JOURNAL OF CRYSTAL GROWTH, 2015, 413 :12-16
[9]   The agglomeration dynamics of self-interstitials in growing Czochralski silicon crystals [J].
Kulkarni, MS ;
Holzer, JC ;
Ferry, LW .
JOURNAL OF CRYSTAL GROWTH, 2005, 284 (3-4) :353-368
[10]   Investigation of different cases of dislocation generation during industrial Cz silicon pulling [J].
Lanterne, Adeline ;
Gaspar, Guilherme ;
Hu, Yu ;
Ovrelid, Eivind ;
Di Sabatino, Marisa .
PHYSICA STATUS SOLIDI C: CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 13 NO 10-12, 2016, 13 (10-12) :827-832