Non-simplex Enclosing Polytope Generation Concept for Tensor Product Model Transformation based Controller Design

被引:0
作者
Kuti, Jozsef [1 ,2 ]
Galambos, Peter [3 ]
Baranyi, Peter [2 ,4 ]
机构
[1] Hungarian Acad Sci, Inst Comp Sci & Control, Kende U 13-17, H-1111 Budapest, Hungary
[2] Budapest Univ Technol & Econ, Dept Telecommun & Media Informat, Magyar Tudosok Krt 2, H-1117 Budapest, Hungary
[3] Obuda Univ, Antal Bejczy Ctr Intelligent Robot, Becsi Ut 96-B, H-1034 Budapest, Hungary
[4] Szechenyi Istvan Univ, Dept Informat, Egyet Ter 1, H-9026 Gyor, Hungary
来源
2016 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC) | 2016年
关键词
TP Model Transformation; Polytopic modelling; qLPV modelling; LMI-based design; STABILIZATION;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In polytopic model-based controller synthesis, the vertices of the model determine the achievable performance characteristics. This paper introduces a new concept, that allows for the sophisticated construction of non-simplex enclosing polytopes. The non-simplex structures in general, have much better descriptor properties than the simplex one that leads to less conservative synthesis. The paper demonstrates the workflow of controller design for a nonlinear system through the example of the TORA (Translational Oscillator with a Rotational Actuator) system. The numerical results clearly show that the proposed approach is capable of excluding non-stabilizable regions located between the exact convex hull and the enclosing simplex. The non-simplex polytope leads to an increased number of vertices but it practically does not influence the viability of Tensor-Product (TP) formalization and the feasibility of controller design while the achievable control performance can be improved significantly.
引用
收藏
页码:3368 / 3373
页数:6
相关论文
共 26 条
[1]  
[Anonymous], ASIAN J CONTROL
[2]  
[Anonymous], 2009, TR20093 MOSEK
[3]  
Avis D., 1995, Proceedings of the Eleventh Annual Symposium on Computational Geometry, P20, DOI 10.1145/220279.220282
[4]  
Baranyi P., 2004, IEEE T IND ELECTRON, V51
[5]  
Baranyi P., 2013, TENSOR PRODUCT MODEL
[6]  
Baranyi P, 2009, SAMI: 2009 7TH INTERNATIONAL SYMPOSIUM ON APPLIED MACHINE INTELLIGENCE AND INFORMATICS, P56
[7]   The Quickhull algorithm for convex hulls [J].
Barber, CB ;
Dobkin, DP ;
Huhdanpaa, H .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1996, 22 (04) :469-483
[8]  
Boyd S. P., 1994, PHILADELPHIA SOC IND
[9]  
Bupp R. T., 1998, INT J ROBUST NONLIN, V307, P310
[10]  
Bupp R. T., 1994, P ASME, P449