Microlocal branes are constructible sheaves

被引:77
|
作者
Nadler, David [1 ]
机构
[1] Northwestern Univ, Dept Math, Evanston, IL 60208 USA
来源
SELECTA MATHEMATICA-NEW SERIES | 2009年 / 15卷 / 04期
基金
美国国家科学基金会;
关键词
EXACT LAGRANGIAN SUBMANIFOLDS; HOMOLOGY; CYCLES;
D O I
10.1007/s00029-009-0008-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let X be a compact real analytic manifold, and let T* X be its cotangent bundle. In a recent paper with Zaslow (J Am Math Soc 22: 233-286, 2009), we showed that the dg category Sh(c)(X) of constructible sheaves on X quasi-embeds into the triangulated envelope F(T* X) of the Fukaya category of T* X. We prove here that the quasi-embedding is in fact a quasi-equivalence. When X is a complex manifold, one may interpret this as a topological analogue of the identification of Lagrangian branes in T* X and regular holonomic D-X-modules developed by Kapustin (A-branes and noncommutative geometry, arXiv:hep-th/0502212) and Kapustin and Witten (Commun Number Theory Phys 1(1):1-236, 2007) from a physical perspective. As a concrete application, we show that compact connected exact Lagrangians in T* X (with some modest homological assumptions) are equivalent in the Fukaya category to the zero section. In particular, this determines their (complex) cohomology ring and homology class in T* X, and provides a homological bound on their number of intersection points. An independent characterization of compact branes in T* X has recently been obtained by Fukaya et al. (Invent Math 172(1): 1-27, 2008).
引用
收藏
页码:563 / 619
页数:57
相关论文
共 50 条
  • [1] Microlocal branes are constructible sheaves
    David Nadler
    Selecta Mathematica, 2009, 15 : 563 - 619
  • [2] MICROLOCAL STUDY OF SHEAVES .2. CONSTRUCTIBLE SHEAVES
    KASHIWARA, M
    SCHAPIRA, P
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1983, 59 (08) : 352 - 354
  • [3] Constructible sheaves are holonomic
    A. Beilinson
    Selecta Mathematica, 2016, 22 : 1797 - 1819
  • [4] Constructible sheaves are holonomic
    Beilinson, A.
    SELECTA MATHEMATICA-NEW SERIES, 2016, 22 (04): : 1797 - 1819
  • [5] Constructible sheaves on schemes
    Hemo, Tamir
    Richarz, Timo
    Scholbach, Jakob
    ADVANCES IN MATHEMATICS, 2023, 429
  • [6] MICROLOCAL STUDY OF SHEAVES
    KASHIWARA, M
    SCHAPIRA, P
    ASTERISQUE, 1985, (128) : 5 - &
  • [7] Constructible sheaves and the Fukaya category
    Nadler, David
    Zaslow, Eric
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 22 (01) : 233 - 286
  • [8] Characteristic varieties and constructible sheaves
    Laboratoire J. A. Dieudonné, UMR du CNRS 6621, Université de Nice Sophia-Antipolis, Parc Valrose, 06108 Nice Cedex 02, France
    Att Aca Naz Lincei Cl Sci Fis Mat Nat Rend Lincei Mat Appl, 2007, 4 (365-389):
  • [9] Legendrian knots and constructible sheaves
    Vivek Shende
    David Treumann
    Eric Zaslow
    Inventiones mathematicae, 2017, 207 : 1031 - 1133
  • [10] NILSSON INTEGRALS AND CONSTRUCTIBLE SHEAVES
    ANDRONIKOF, E
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1992, 120 (01): : 51 - 85