A second-order numerical method for space-time variable-order diffusion equation

被引:2
作者
Lu, Shujuan [1 ]
Xu, Tao [1 ]
Feng, Zhaosheng [2 ]
机构
[1] Beihang Univ, Sch Math & Sci, Beijing 100191, Peoples R China
[2] Univ Texas Rio Grande Valley, Sch Math & Stat Sci, Edinburg, TX 78539 USA
基金
中国国家自然科学基金;
关键词
Diffusion equation; Finite difference scheme; Stability; Convergence;
D O I
10.1016/j.cam.2020.113358
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose a second-order finite difference scheme to study a class of space-time variable-order fractional diffusion equation, and show that the scheme is not only unconditionally stable but also convergent with the convergence order O(tau(2) + h(2)) under certain conditions. Some numerical examples are illustrated which are in good agreement with our theoretical results. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:16
相关论文
共 27 条
[21]  
Miller KS, 1993, An Introduction to the Fractional Calculus and Fractional Differential Equations
[22]   A stable three-level explicit spline finite difference scheme for a class of nonlinear time variable order fractional partial differential equations [J].
Moghaddam, B. P. ;
Machado, J. A. T. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 73 (06) :1262-1269
[23]  
Podlubny I., 1999, FRACTIONAL DIFFERENT
[24]   Variable-order fractional differential operators in anomalous diffusion modeling [J].
Sun, HongGuang ;
Chen, Wen ;
Chen, YangQuan .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2009, 388 (21) :4586-4592
[25]  
Wang W., 2019, J COMPUT APPL MATH, V367
[26]   Numerical analysis of a new space-time variable fractional order advection-dispersion equation [J].
Zhang, H. ;
Liu, F. ;
Zhuang, P. ;
Turner, I. ;
Anh, V. .
APPLIED MATHEMATICS AND COMPUTATION, 2014, 242 :541-550
[27]   NUMERICAL METHODS FOR THE VARIABLE-ORDER FRACTIONAL ADVECTION-DIFFUSION EQUATION WITH A NONLINEAR SOURCE TERM [J].
Zhuang, P. ;
Liu, F. ;
Anh, V. ;
Turner, I. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (03) :1760-1781