A second-order numerical method for space-time variable-order diffusion equation

被引:2
作者
Lu, Shujuan [1 ]
Xu, Tao [1 ]
Feng, Zhaosheng [2 ]
机构
[1] Beihang Univ, Sch Math & Sci, Beijing 100191, Peoples R China
[2] Univ Texas Rio Grande Valley, Sch Math & Stat Sci, Edinburg, TX 78539 USA
基金
中国国家自然科学基金;
关键词
Diffusion equation; Finite difference scheme; Stability; Convergence;
D O I
10.1016/j.cam.2020.113358
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose a second-order finite difference scheme to study a class of space-time variable-order fractional diffusion equation, and show that the scheme is not only unconditionally stable but also convergent with the convergence order O(tau(2) + h(2)) under certain conditions. Some numerical examples are illustrated which are in good agreement with our theoretical results. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:16
相关论文
共 27 条
[1]  
[Anonymous], 2006, Theory and Applications of Fractional Differential Equations, DOI DOI 10.1016/S0304-0208(06)80001-0
[2]   An improved collocation method for multi-dimensional space-time variable-order fractional Schrodinger equations [J].
Bhrawy, A. H. ;
Zaky, M. A. .
APPLIED NUMERICAL MATHEMATICS, 2017, 111 :197-218
[3]   A compact finite difference scheme for variable order subdiffusion equation [J].
Cao, Jianxiong ;
Qiu, Yanan ;
Song, Guojie .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 48 :140-149
[4]   Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative [J].
Celik, Cem ;
Duman, Melda .
JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (04) :1743-1750
[5]   Fractional diffusion in inhomogeneous media [J].
Chechkin, AV ;
Gorenflo, R ;
Sokolov, IM .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (42) :L679-L684
[6]   Numerical approximation for a variable-order nonlinear reaction-subdiffusion equation [J].
Chen, Chang-Ming ;
Liu, F. ;
Turner, I. ;
Anh, V. ;
Chen, Y. .
NUMERICAL ALGORITHMS, 2013, 63 (02) :265-290
[7]   Numerical methods with fourth-order spatial accuracy for variable-order nonlinear Stokes' first problem for a heated generalized second grade fluid [J].
Chen, Chang-Ming ;
Liu, F. ;
Turner, I. ;
Anh, V. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (03) :971-986
[8]   NUMERICAL SCHEMES WITH HIGH SPATIAL ACCURACY FOR A VARIABLE-ORDER ANOMALOUS SUBDIFFUSION EQUATION [J].
Chen, Chang-Ming ;
Liu, F. ;
Anh, V. ;
Turner, I. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2010, 32 (04) :1740-1760
[9]   Numerical methods and analysis for a multi-term time-space variable-order fractional advection-diffusion equations and applications [J].
Chen, Ruige ;
Liu, Fawang ;
Vo Anh .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 352 :437-452
[10]   Numerical simulation of a new two-dimensional variable-order fractional percolation equation in non-homogeneous porous media [J].
Chen, S. ;
Liu, F. ;
Burrage, K. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, 67 (09) :1673-1681