bsamGP: An R Package for Bayesian Spectral Analysis Models Using Gaussian Process Priors

被引:5
作者
Jo, Seongil [1 ]
Choi, Taeryon [2 ]
Park, Beomjo [2 ]
Lenk, Peter [3 ]
机构
[1] Chonbuk Natl Univ, Dept Stat, Inst Appl Stat, Jeonju, South Korea
[2] Korea Univ, Dept Stat, Seoul, South Korea
[3] Univ Michigan, Stephen M Ross Sch Business, Ann Arbor, MI 48109 USA
来源
JOURNAL OF STATISTICAL SOFTWARE | 2019年 / 90卷 / 10期
基金
新加坡国家研究基金会;
关键词
cosine basis; Gaussian process priors; Markov chain Monte Carlo; R; shape restrictions; semiparametric models; spectral representation; DENSITY-ESTIMATION; SEMIPARAMETRIC REGRESSION; POSTERIOR CONSISTENCY; QUANTILE REGRESSION; VARIABLE SELECTION; HIGH-TEMPERATURES; MORTALITY; INFERENCE; APPROXIMATION; CONJUGATE;
D O I
10.18637/jss.v090.i10
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The Bayesian spectral analysis model (BSAM) is a powerful tool to deal with semiparametric methods in regression and density estimation based on the spectral representation of Gaussian process priors. The bsamGP package for R provides a comprehensive set of programs for the implementation of fully Bayesian semiparametric methods based on BSAM. Currently, bsamGP includes semiparametric additive models for regression, generalized models and density estimation. In particular, bsamGP deals with constrained regression models with monotone, convex/concave, S-shaped and U-shaped functions by modeling derivatives of regression functions as squared Gaussian processes. bsamGP also contains Bayesian model selection procedures for testing the adequacy of a parametric model relative to a non-specific semiparametric alternative and the existence of the shape restriction. To maximize computational efficiency, we carry out posterior sampling algorithms of all models using compiled Fortran code. The package is illustrated through Bayesian semiparametric analyses of synthetic data and benchmark data.
引用
收藏
页数:41
相关论文
共 50 条
[31]   Bayesian Random-Effects Meta-Analysis Using the bayesmeta R Package [J].
Roever, Christian .
JOURNAL OF STATISTICAL SOFTWARE, 2020, 93 (06) :1-51
[32]   Bayesian nonparametric spectral density estimation using B-spline priors [J].
Edwards, Matthew C. ;
Meyer, Renate ;
Christensen, Nelson .
STATISTICS AND COMPUTING, 2019, 29 (01) :67-78
[33]   Efficient Bayesian generalized linear models with time-varying coefficients: The walker package in R [J].
Helske, Jouni .
SOFTWAREX, 2022, 18
[34]   An R package for the integrated analysis of metabolomics and spectral data [J].
Costa, Christopher ;
Maraschin, Marcelo ;
Rocha, Miguel .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2016, 129 :117-124
[35]   New Frontiers in Bayesian Modeling Using the INLA Package in R [J].
van Niekerk, Janet ;
Bakka, Haakon ;
Rue, Havard ;
Schenk, Olaf .
JOURNAL OF STATISTICAL SOFTWARE, 2021, 100 (02) :1-28
[36]   BayesGmed: An R-package for Bayesian causal mediation analysis [J].
Yimer, Belay J. ;
Lunt, Mark ;
Beasley, Marcus ;
Macfarlane, Gary ;
McBeth, John .
PLOS ONE, 2023, 18 (06)
[37]   pyrichlet: A Python']Python Package for Density Estimation and Clustering Using Gaussian Mixture Models [J].
Selva, Fidel ;
Fuentes-Garcia, Ruth ;
Gil-Leyva, Maria Fernanda .
JOURNAL OF STATISTICAL SOFTWARE, 2025, 112 (08) :1-39
[38]   spBayesSurv: Fitting Bayesian Spatial Survival Models Using R [J].
Zhou, Haiming ;
Hanson, Timothy ;
Zhang, Jiajia .
JOURNAL OF STATISTICAL SOFTWARE, 2020, 92 (09) :1-33
[39]   Addressing positivity violations in causal effect estimation using Gaussian process priors [J].
Zhu, Angela Yaqian ;
Mitra, Nandita ;
Roy, Jason .
STATISTICS IN MEDICINE, 2023, 42 (01) :33-51
[40]   NONPARAMETRIC RANDOM EFFECTS FUNCTIONAL REGRESSION MODEL USING GAUSSIAN PROCESS PRIORS [J].
Wang, Zhanfeng ;
Ding, Hao ;
Chen, Zimu ;
Shi, Jian Qing .
STATISTICA SINICA, 2021, 31 (01) :53-78