bsamGP: An R Package for Bayesian Spectral Analysis Models Using Gaussian Process Priors

被引:5
|
作者
Jo, Seongil [1 ]
Choi, Taeryon [2 ]
Park, Beomjo [2 ]
Lenk, Peter [3 ]
机构
[1] Chonbuk Natl Univ, Dept Stat, Inst Appl Stat, Jeonju, South Korea
[2] Korea Univ, Dept Stat, Seoul, South Korea
[3] Univ Michigan, Stephen M Ross Sch Business, Ann Arbor, MI 48109 USA
来源
JOURNAL OF STATISTICAL SOFTWARE | 2019年 / 90卷 / 10期
基金
新加坡国家研究基金会;
关键词
cosine basis; Gaussian process priors; Markov chain Monte Carlo; R; shape restrictions; semiparametric models; spectral representation; DENSITY-ESTIMATION; SEMIPARAMETRIC REGRESSION; POSTERIOR CONSISTENCY; QUANTILE REGRESSION; VARIABLE SELECTION; HIGH-TEMPERATURES; MORTALITY; INFERENCE; APPROXIMATION; CONJUGATE;
D O I
10.18637/jss.v090.i10
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The Bayesian spectral analysis model (BSAM) is a powerful tool to deal with semiparametric methods in regression and density estimation based on the spectral representation of Gaussian process priors. The bsamGP package for R provides a comprehensive set of programs for the implementation of fully Bayesian semiparametric methods based on BSAM. Currently, bsamGP includes semiparametric additive models for regression, generalized models and density estimation. In particular, bsamGP deals with constrained regression models with monotone, convex/concave, S-shaped and U-shaped functions by modeling derivatives of regression functions as squared Gaussian processes. bsamGP also contains Bayesian model selection procedures for testing the adequacy of a parametric model relative to a non-specific semiparametric alternative and the existence of the shape restriction. To maximize computational efficiency, we carry out posterior sampling algorithms of all models using compiled Fortran code. The package is illustrated through Bayesian semiparametric analyses of synthetic data and benchmark data.
引用
收藏
页数:41
相关论文
共 50 条
  • [1] BAYESIAN ANALYSIS OF SHAPE-RESTRICTED FUNCTIONS USING GAUSSIAN PROCESS PRIORS
    Lenk, Peter J.
    Choi, Taeryon
    STATISTICA SINICA, 2017, 27 (01) : 43 - 69
  • [2] Bayesian Multitask Classification with Gaussian Process Priors
    Skolidis, Grigorios
    Sanguinetti, Guido
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2011, 22 (12): : 2011 - 2021
  • [3] Bayesian inference with rescaled Gaussian process priors
    van der Vaart, Aad
    van Zanten, Harry
    ELECTRONIC JOURNAL OF STATISTICS, 2007, 1 : 433 - 448
  • [4] Bayesian nonparametric quantile mixed-effects models via regularization using Gaussian process priors
    Tanabe, Yuta
    Araki, Yuko
    Kinoshita, Masahiro
    Okamura, Hisayoshi
    Iwata, Sachiko
    Iwata, Osuke
    JAPANESE JOURNAL OF STATISTICS AND DATA SCIENCE, 2022, 5 (01) : 241 - 267
  • [5] Bayesian nonparametric quantile mixed-effects models via regularization using Gaussian process priors
    Yuta Tanabe
    Yuko Araki
    Masahiro Kinoshita
    Hisayoshi Okamura
    Sachiko Iwata
    Osuke Iwata
    Japanese Journal of Statistics and Data Science, 2022, 5 : 241 - 267
  • [6] spNNGP R Package for Nearest Neighbor Gaussian Process Models
    Finley, Andrew O.
    Datta, Abhirup
    Banerjee, Sudipto
    JOURNAL OF STATISTICAL SOFTWARE, 2022, 103 (05): : 1 - 40
  • [7] Bayesian Testing of Linear Versus Nonlinear Effects Using Gaussian Process Priors
    Mulder, Joris
    AMERICAN STATISTICIAN, 2023, 77 (01): : 1 - 11
  • [8] Objective Bayesian Analysis for Gaussian Hierarchical Models with Intrinsic Conditional Autoregressive Priors
    Keefe, Matthew J.
    Ferreira, Marco A. R.
    Franck, Christopher T.
    BAYESIAN ANALYSIS, 2019, 14 (01): : 181 - 209
  • [9] Spiked Dirichlet Process Priors for Gaussian Process Models
    Savitsky, Terrance
    Vannucci, Marina
    JOURNAL OF PROBABILITY AND STATISTICS, 2010, 2010
  • [10] Improving Bayesian radiological profiling of waste drums using Dirichlet priors, Gaussian process priors, and hierarchical modeling
    Laloy, Eric
    Rogiers, Bart
    Bielen, An
    Borella, Alessandro
    Boden, Sven
    APPLIED RADIATION AND ISOTOPES, 2023, 194