HADAMARD FUNCTIONS OF INVERSE M-MATRICES

被引:11
作者
Dellacherie, Claude [1 ]
Martinez, Servet [2 ,3 ]
San Martin, Jaime [2 ,3 ]
机构
[1] Univ Rouen, UMR 6085, Lab Raphael Salem, F-76821 Mont St Aignan, France
[2] Univ Chile, CNRS, UMI 2807, Ctr Math Modelling, Santiago, Chile
[3] Univ Chile, CNRS, UMI 2807, Dept Engn Math, Santiago, Chile
关键词
M-matrices; Hadamard functions; ultrametric matrices; potential matrices; GENERALIZED ULTRAMETRIC MATRICES; PRESERVE;
D O I
10.1137/060651082
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that the class of generalized ultrametric matrices (GUM) is the largest class of bipotential matrices stable under Hadamard increasing functions. We also show that any power alpha >= 1, in the sense of Hadamard functions, of an inverse M- matrix is also inverse M- matrix. This was conjectured for alpha = 2 by Neumann in [Linear Algebra Appl., 285 (1998), pp. 277-290], and solved for integer alpha >= 1 by Chen in [Linear Algebra Appl., 381 (2004), pp. 53-60]. We study the class of filtered matrices, which include naturally the GUM matrices, and present some sufficient conditions for a filtered matrix to be a bipotential.
引用
收藏
页码:289 / 315
页数:27
相关论文
共 17 条
[1]  
Ando T., 1980, Linear Multilinear Algebra, V8, P291
[2]   On functions that preserve M-matrices and inverse M-matrices [J].
Bapat, RB ;
Catral, M ;
Neumann, M .
LINEAR & MULTILINEAR ALGEBRA, 2005, 53 (03) :193-201
[3]   A property concerning the Hadamard powers of inverse M-matrices [J].
Chen, SC .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 381 :53-60
[4]  
Dartnell P., 1988, LECT NOTES MATH, V1321, P197
[5]   Potential kernels relative to a filtration. [J].
Dellacherie, C ;
Taibi, D ;
Martinez, S ;
san Martin, J .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 1998, 34 (06) :707-725
[6]   Ultrametric matrices and induced Markov chains [J].
Dellacherie, C ;
Martinez, S ;
SanMartin, J .
ADVANCES IN APPLIED MATHEMATICS, 1996, 17 (02) :169-183
[7]   Description of the sub-Markov kernel associated to generalized ultrametric matrices.: An algorithmic approach [J].
Dellacherie, C ;
Martínez, S ;
Martín, JS .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2000, 318 (1-3) :1-21
[8]  
Fiedler M., 1983, Linear Algebra Appl, V13, P185
[9]  
Hirsch, 1989, LECT NOTES MATH, P39
[10]  
Horn R. A., 2013, MATRIX ANAL