Factors of generalised polynomials and automatic sequences

被引:3
|
作者
Byszewski, Jakub [2 ]
Konieczny, Jakub [1 ,2 ]
机构
[1] Hebrew Univ Jerusalem, Einstein Inst Math, Edmond J Safra Campus, IL-9190401 Jerusalem, Israel
[2] Jagiellonian Univ, Inst Math, Fac Math & Comp Sci, Ul Prof Stanislawa Lojasiewicza 6, PL-30348 Krakow, Poland
来源
INDAGATIONES MATHEMATICAE-NEW SERIES | 2018年 / 29卷 / 03期
基金
欧洲研究理事会;
关键词
Generalised polynomials; Automatic sequences; Nilmanifolds;
D O I
10.1016/j.indag.2018.03.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this short note is to generalise the result of Rampersad-Shallit saying that an automatic sequence and a Sturmian sequence cannot have arbitrarily long common factors. We show that the same result holds if a Sturmian sequence is replaced by an arbitrary sequence whose terms are given by a generalised polynomial (i.e., an expression involving algebraic operations and the floor function) that is not periodic except for a set of density zero. (C) 2018 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:981 / 985
页数:5
相关论文
共 37 条
  • [11] Pseudorandom sequences derived from automatic sequences
    Merai, Laszlo
    Winterhof, Arne
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2022, 14 (04): : 783 - 815
  • [12] Schur congruences, Carlitz sequences of polynomials and automaticity
    Allouche, JP
    Skordev, G
    DISCRETE MATHEMATICS, 2000, 214 (1-3) : 21 - 49
  • [13] Cayley graphs and automatic sequences
    Guillot, Pierre
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2017, 45 (01) : 245 - 270
  • [14] Exponential sums with automatic sequences
    Drappeau, Sary
    Muellner, Clemens
    ACTA ARITHMETICA, 2018, 185 (01) : 81 - 99
  • [15] Cayley graphs and automatic sequences
    Pierre Guillot
    Journal of Algebraic Combinatorics, 2017, 45 : 245 - 270
  • [16] On a family of automatic apwenian sequences
    Guo, Ying-Jun
    Han, Guo-Niu
    DISCRETE MATHEMATICS, 2025, 348 (05)
  • [17] Limit sets of automatic sequences
    Barbé, A
    von Haeseler, F
    ADVANCES IN MATHEMATICS, 2003, 175 (02) : 169 - 196
  • [18] Linear cellular automata and automatic sequences
    Allouche, JP
    Von Haeseler, F
    Lange, E
    Petersen, A
    Skordev, G
    PARALLEL COMPUTING, 1997, 23 (11) : 1577 - 1592
  • [19] Automatic sequences and parity of partition functions
    Chen, Shi-Chao
    ADVANCES IN APPLIED MATHEMATICS, 2025, 166
  • [20] Hyperquadratic continued fractions and automatic sequences
    Lasjaunias, Alain
    Yao, Jia-Yan
    FINITE FIELDS AND THEIR APPLICATIONS, 2016, 40 : 46 - 60