A Bypass-Based U-Net for Medical Image Segmentation

被引:3
作者
Chen, Kaixuan [1 ]
Xu, Gengxin [1 ]
Qian, Jiaying [1 ]
Ren, Chuan-Xian [1 ]
机构
[1] Sun Yat Sen Univ, Sch Math, Guangzhou 510275, Peoples R China
来源
INTELLIGENCE SCIENCE AND BIG DATA ENGINEERING: VISUAL DATA ENGINEERING, PT I | 2019年 / 11935卷
基金
中国国家自然科学基金;
关键词
U-Net; Medical image segmentation; Retinal vessel segmentation; Skin lesion segmentation;
D O I
10.1007/978-3-030-36189-1_13
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
U-Net has been one of the important deep learning models applied for biomedical image segmentation for a few years. In this paper, inspired by the way how fully convolutional network (FCN) makes dense predictions, we modify U-Net by adding a new bypass for the expansive path. Before combining the contracting path with the upsampled output, we connect with the feature maps from a deeper encoding convolutional layer for the decoding up-convolutional units, and sum up the information learned from both sides. Also, we have implemented this modification to recurrent residual convolutional neural network based on U-Net as well. The experimental results show that the proposed bypass-based U-Net can gain further context information, especially the details from the previous convolutional layer, and outperforms the original U-Net on the DRIVE dataset for retinal vessel segmentation and the ISBI 2018 challenge for skin lesion segmentation.
引用
收藏
页码:155 / 164
页数:10
相关论文
共 17 条
[1]   Recurrent residual U-Net for medical image segmentation [J].
Alom, Md Zahangir ;
Yakopcic, Chris ;
Hasan, Mahmudul ;
Taha, Tarek M. ;
Asari, Vijayan K. .
JOURNAL OF MEDICAL IMAGING, 2019, 6 (01)
[2]  
[Anonymous], 2018, SCI DATA, DOI DOI 10.1038/sdata.2018.161
[3]  
[Anonymous], 2017, COMMUN ACM, DOI DOI 10.1145/3065386
[4]  
[Anonymous], 2016, DIABETIC RETINOPATHY
[5]   Crowdsourcing the creation of image segmentation algorithms for connectomics [J].
Arganda-Carreras, Ignacio ;
Turaga, Srinivas C. ;
Berger, Daniel P. ;
Ciresan, Dan ;
Giusti, Alessandro ;
Gambardella, Luca M. ;
Schmidhuber, Juergen ;
Laptev, Dmitry ;
Dwivedi, Sarvesh ;
Buhmann, Joachim M. ;
Liu, Ting ;
Seyedhosseini, Mojtaba ;
Tasdizen, Tolga ;
Kamentsky, Lee ;
Burget, Radim ;
Uher, Vaclav ;
Tan, Xiao ;
Sun, Changming ;
Pham, Tuan D. ;
Bas, Erhan ;
Uzunbas, Mustafa G. ;
Cardona, Albert ;
Schindelin, Johannes ;
Seung, H. Sebastian .
FRONTIERS IN NEUROANATOMY, 2015, 9 :1-13
[6]  
Chen H, 2016, AAAI CONF ARTIF INTE, P1167
[7]  
Codella NCF, 2018, I S BIOMED IMAGING, P168, DOI 10.1109/ISBI.2018.8363547
[8]   Brain tumor segmentation with Deep Neural Networks [J].
Havaei, Mohammad ;
Davy, Axel ;
Warde-Farley, David ;
Biard, Antoine ;
Courville, Aaron ;
Bengio, Yoshua ;
Pal, Chris ;
Jodoin, Pierre-Marc ;
Larochelle, Hugo .
MEDICAL IMAGE ANALYSIS, 2017, 35 :18-31
[9]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[10]   Cancer Statistics, 2009 [J].
Jemal, Ahmedin ;
Siegel, Rebecca ;
Ward, Elizabeth ;
Hao, Yongping ;
Xu, Jiaquan ;
Thun, Michael J. .
CA-A CANCER JOURNAL FOR CLINICIANS, 2009, 59 (04) :225-249