Modeling and forecasting building energy consumption: A review of data-driven techniques

被引:507
作者
Bourdeau, Mathieu [1 ]
Zhai, Xiao Qiang [1 ]
Nefzaoui, Elyes [2 ,3 ]
Guo, Xiaofeng [2 ]
Chatellier, Patrice [4 ]
机构
[1] Shanghai Jiao Tong Univ, Inst Refrigerat & Cryogen, Shanghai 200240, Peoples R China
[2] Univ Paris Est, ESIEE Paris, 2 Bd Blaise Pascal, F-93162 Noisy Le Grand, France
[3] Univ Paris Est, ESYCOM EA 2552, CNAM, ESIEE Paris,UPEMLV, F-77454 Marne La Vallee, France
[4] Univ Paris Est, IFSTTAR, 14-20 Bd Newton, Champs Sur Marne, Marne La Vallee, France
基金
国家重点研发计划;
关键词
Building energy consumption; Building load forecasting; Data-driven techniques; Machine learning; ARTIFICIAL NEURAL-NETWORK; SHORT-TERM; ELECTRICITY CONSUMPTION; RESIDENTIAL BUILDINGS; HYBRID MODEL; TIME-SERIES; DIFFERENTIAL EVOLUTION; REGRESSION-ANALYSIS; OFFICE BUILDINGS; RANDOM FOREST;
D O I
10.1016/j.scs.2019.101533
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Building energy consumption modeling and forecasting is essential to address buildings energy efficiency problems and take up current challenges of human comfort, urbanization growth and the consequent energy consumption increase. In a context of integrated smart infrastructures, data-driven techniques rely on data analysis and machine learning to provide flexible methods for building energy prediction. The present paper offers a review of studies developing data-driven models for building scale applications. The prevalent methods are introduced with a focus on the input data characteristics and data pre-processing methods, the building typologies considered, the targeted energy end-uses and forecasting horizons, and accuracy assessment. A special attention is also given to different machine learning approaches. Based on the results of this review, the latest technical improvements and research efforts are synthesized. The key role of occupants' behavior integration in data-driven modeling is discussed. Limitations and research gaps are highlighted. Future research opportunities are also identified.
引用
收藏
页数:27
相关论文
共 147 条
  • [1] Abramson N., 2006, PATTERN RECOGN, V103, P886
  • [2] Trees vs Neurons: Comparison between random forest and ANN for high-resolution prediction of building energy consumption
    Ahmad, Muhammad Waseem
    Mourshed, Monjur
    Rezgui, Yacine
    [J]. ENERGY AND BUILDINGS, 2017, 147 : 77 - 89
  • [3] A comprehensive overview on the data driven and large scale based approaches for forecasting of building energy demand: A review
    Ahmad, Tanveer
    Chen, Huanxin
    Guo, Yabin
    Wang, Jiangyu
    [J]. ENERGY AND BUILDINGS, 2018, 165 : 301 - 320
  • [4] Energy and comfort assessment in educational building: Case study in a French university campus
    Allab, Yacine
    Pellegrino, Margot
    Guo, Xiaofeng
    Nefzaoui, Elyes
    Kindinis, Andrea
    [J]. ENERGY AND BUILDINGS, 2017, 143 : 202 - 219
  • [5] Robust ensemble learning framework for day-ahead forecasting of household based energy consumption
    Alobaidi, Mohammad H.
    Chebana, Fateh
    Meguid, Mohamed A.
    [J]. APPLIED ENERGY, 2018, 212 : 997 - 1012
  • [6] A review of data-driven building energy consumption prediction studies
    Amasyali, Kadir
    El-Gohary, Nora M.
    [J]. RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2018, 81 : 1192 - 1205
  • [7] Intelligent techniques for forecasting electricity consumption of buildings
    Amber, K. P.
    Ahmad, R.
    Aslam, M. W.
    Kousar, A.
    Usman, M.
    Khan, M. S.
    [J]. ENERGY, 2018, 157 : 886 - 893
  • [8] Energy Consumption Forecasting for University Sector Buildings
    Amber, Khuram Pervez
    Aslam, Muhammad Waqar
    Mahmood, Anzar
    Kousar, Anila
    Younis, Muhammad Yamin
    Akbar, Bilal
    Chaudhary, Ghulam Qadar
    Hussain, Syed Kashif
    [J]. ENERGIES, 2017, 10 (10):
  • [9] American Society of Heating Refrigeration and Air Conditioning Engineers (ASHRAE), 2013, ASHRAE Standard 90.1-2013
  • [10] [Anonymous], 2016, TRACK CLEAN EN PROGR