A note on the Koekoeks' differential equation for generalized Jacobi polynomials

被引:9
作者
Bavinck, H [1 ]
机构
[1] Delft Univ Technol, Fac Informat Technol & Syst, NL-2628 CD Delft, Netherlands
关键词
differential operators; orthogonal polynomials; Jacobi polynomials;
D O I
10.1016/S0377-0427(99)00180-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In a recent paper (Differential equations for generalized Jacobi polynomials, submitted for publication) Koekoek and Koekoek discovered a linear differential equation for the polynomials {Pn(x,beta.M.N) (x)}(n=0)(infinity), which are orthogonal on [-1,1] with respect to G(alpha + beta + 2)/2(alpha+beta+1) Gamma(alpha + 1)Gamma(beta + 1) (1 - x)(alpha)(1 + x)(beta) + M delta(x + 1) + N delta(x - 1), alpha,beta > - 1, M,N greater than or equal to 0. This differential equation is of infinite order, except in a number of cases. It is the purpose of this note to reprove and interpret the results of the Koekoeks in the finite-order cases in a short and easy way. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:87 / 92
页数:6
相关论文
共 50 条
[41]   Jacobi-Sobolev-type orthogonal polynomials: holonomic equation and electrostatic interpretation - a non-diagonal case [J].
Duenas, Herbert ;
Garza, Luis E. .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2013, 24 (01) :70-83
[42]   Heun's equation, generalized hypergeometric function and exceptional Jacobi polynomial [J].
Takemura, Kouichi .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (08)
[43]   Recurrence Relation and Differential Equation for a Class of Orthogonal Polynomials [J].
Cvetkovic, Aleksandar S. ;
Milovanovic, Gradimir V. ;
Vasovic, Nevena .
RESULTS IN MATHEMATICS, 2018, 73 (01)
[44]   Recurrence Relation and Differential Equation for a Class of Orthogonal Polynomials [J].
Aleksandar S. Cvetković ;
Gradimir V. Milovanović ;
Nevena Vasović .
Results in Mathematics, 2018, 73
[45]   On a conjecture of A. Magnus concerning the asymptotic behavior of the recurrence coefficients of the generalized Jacobi polynomials [J].
Moreno, A. Foulquie ;
Martinez-Finkelshtein, A. ;
Sousa, V. L. .
JOURNAL OF APPROXIMATION THEORY, 2010, 162 (04) :807-831
[46]   Product formula for Jacobi polynomials, spherical harmonics and generalized Bessel function of dihedral type [J].
Demni, Nizar .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2010, 21 (02) :105-123
[47]   RECURRENCE COEFFICIENTS OF GENERALIZED CHARLIER POLYNOMIALS AND THE FIFTH PAINLEVE EQUATION [J].
Filipuk, Galina ;
Van Assche, Walter .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 141 (02) :551-562
[48]   A simple approach to Jacobi polynomials [J].
Weber, H. J. .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2007, 18 (03) :217-221
[49]   Zeros of Jacobi and ultraspherical polynomials [J].
Arvesu, J. ;
Driver, K. ;
Littlejohn, L. L. .
RAMANUJAN JOURNAL, 2023, 61 (02) :629-648
[50]   On Jacobi and continuous Hahn polynomials [J].
Koelink, HT .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 124 (03) :887-898