A note on the Koekoeks' differential equation for generalized Jacobi polynomials

被引:9
作者
Bavinck, H [1 ]
机构
[1] Delft Univ Technol, Fac Informat Technol & Syst, NL-2628 CD Delft, Netherlands
关键词
differential operators; orthogonal polynomials; Jacobi polynomials;
D O I
10.1016/S0377-0427(99)00180-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In a recent paper (Differential equations for generalized Jacobi polynomials, submitted for publication) Koekoek and Koekoek discovered a linear differential equation for the polynomials {Pn(x,beta.M.N) (x)}(n=0)(infinity), which are orthogonal on [-1,1] with respect to G(alpha + beta + 2)/2(alpha+beta+1) Gamma(alpha + 1)Gamma(beta + 1) (1 - x)(alpha)(1 + x)(beta) + M delta(x + 1) + N delta(x - 1), alpha,beta > - 1, M,N greater than or equal to 0. This differential equation is of infinite order, except in a number of cases. It is the purpose of this note to reprove and interpret the results of the Koekoeks in the finite-order cases in a short and easy way. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:87 / 92
页数:6
相关论文
共 8 条
[1]   Differential and difference operators having orthogonal polynomials with two linear perturbations as eigenfunctions [J].
Bavinck, H .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1998, 92 (02) :85-95
[2]  
KOEKOEK J, UNPUB DIFFERENTIAL E
[3]  
KOEKOEK R, 9817 U TECHN FAC TEC
[4]   ORTHOGONAL POLYNOMIALS WITH WEIGHT FUNCTION (1-X)-ALPHA-(1+X)-BETA-+M-DELTA-(X+1)+N-DELTA-(X-1) [J].
KOORNWINDER, TH .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1984, 27 (02) :205-214
[6]  
Krall H. L., 1938, Duke Math. J., V4, P705, DOI DOI 10.1215/S0012-7094-38-00462-4
[7]  
KRALL HL, 1940, 6 PENNS STAT COLL ST
[8]  
Littlejohn L.L., 1982, QUAEST MATH, V5, P255, DOI [10.1080/16073606.1982.9632267, DOI 10.1080/16073606.1982.9632267]