Impact of oceans on climate change in drylands

被引:59
作者
Guan, Xiaodan [1 ]
Ma, Jieru [1 ]
Huang, Jianping [1 ]
Huang, Ruixin [2 ,3 ]
Zhang, Lei [1 ]
Ma, Zhuguo [4 ]
机构
[1] Lanzhou Univ, Key Lab Semiarid Climate Change, Minist Educ, Coll Atmospher Sci, Lanzhou 730000, Gansu, Peoples R China
[2] Woods Hole Oceanog Inst, Woods Hole, MA 02543 USA
[3] Chinese Acad Sci, State Key Lab Trop Oceanog, South China Sea Inst Oceanol, Guangzhou 510301, Guangdong, Peoples R China
[4] Chinese Acad Sci, Key Lab Reg Climate Environm Temperate East Asia, Inst Atmospher Phys, Beijing 100029, Peoples R China
基金
中国国家自然科学基金;
关键词
NORTH-ATLANTIC OSCILLATION; TROPICAL WESTERN PACIFIC; EL-NINO; MULTIDECADAL VARIABILITY; INTERANNUAL VARIABILITY; PRECIPITATION PATTERNS; CATASTROPHIC SHIFTS; SEMIARID REGIONS; SUMMER RAINFALL; EASTERN CHINA;
D O I
10.1007/s11430-018-9317-8
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Drylands account for approximately 41% of the global total land area. Significant warming and rare precipitation in drylands result in a fragile ecology and deterioration of the living environment, making it more sensitive to global climate change. As an important regulator of the Earth's climate system, the oceans play a vital role in the process of climate change in drylands. In modern climate change in particular, the impact of marine activities on climate change in drylands cannot be neglected. This paper reviews the characteristics of climate change in drylands over the past 100 years, and summarizes the researches conducted on the impact of marine activities on these changes. The review focuses on the impact of the Pacific Decadal Oscillation (PDO), Atlantic Multidecadal Oscillation (AMO), El Nino and La Nina on climate change in drylands, and introduces the mechanisms by which different oceanic oscillation factors synergistically affect climate change in drylands. Studies have shown that global drylands have experienced a significant intensification in warming in the past 100 years, which shows obvious characteristics of interdecadal dry/wet variations. The characteristics of these changes are closely related to the oscillatory factors of the oceanic interdecadal scale. Different phase combinations of oceanic oscillation factors significantly change the land-sea thermal contrast, which in turn affects the westerly jet, planetary wave and blocking frequency, resulting in changes in the temperature and dry/wet characteristics of drylands. With the intensification of climate change in drylands, the impact of marine activities on these regions will reveal new characteristics in the future, which will increase the uncertainty of future climate change in drylands and intensify the impact of these drylands on global climate.
引用
收藏
页码:891 / 908
页数:18
相关论文
共 136 条
[1]  
符淙斌, 1996, 气候与环境研究, V1, P97
[2]  
[Anonymous], EARTH SCI
[3]  
[Anonymous], 2005, 51 IGBP
[4]  
[Anonymous], VARIATION CHARACTERI
[5]  
[Anonymous], ACTA METEOROL SIN
[6]  
[Anonymous], 2007, CLIMATE CHANGE 2007
[7]  
[Anonymous], 2003, DRYLANDS PEOPLE ECOS
[8]  
[Anonymous], CLIM ENV RES
[9]   Food security and climate change in drought-sensitive savanna zones of Ghana [J].
Armah, Frederick A. ;
Odoi, Justice O. ;
Yengoh, Genesis T. ;
Obiri, Samuel ;
Yawson, David O. ;
Afrifa, Ernest K. A. .
MITIGATION AND ADAPTATION STRATEGIES FOR GLOBAL CHANGE, 2011, 16 (03) :291-306
[10]   The Magnitude of Decadal and Multidecadal Variability in North American Precipitation [J].
Ault, Toby R. ;
St George, Scott .
JOURNAL OF CLIMATE, 2010, 23 (04) :842-850