Rho kinase regulates the intracellular micromechanical response of adherent cells to rho activation

被引:74
作者
Kole, TP
Tseng, Y
Huang, L
Katz, JL
Wirtz, D [1 ]
机构
[1] Johns Hopkins Univ, Dept Chem & Biomol Engn, Baltimore, MD 21218 USA
[2] Johns Hopkins Univ, Dept Biomed Engn, Baltimore, MD 21218 USA
[3] Johns Hopkins Univ, Grad Program Mol Biophys, Baltimore, MD 21218 USA
关键词
D O I
10.1091/mbc.E04-03-0218
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Local sol-gel transitions of the cytoskeleton modulate cell shape changes, which are required for essential cellular functions, including motility and adhesion. In vitro studies using purified cytoskeletal proteins have suggested molecular mechanisms of regulation of cytoskeleton mechanics; however, the mechanical behavior of living cells and the signaling pathways by which it is regulated remains largely unknown. To address this issue, we used a nanoscale sensing method, intracellular microrheology, to examine the mechanical response of the cell to activation of the small GTPase Rho. We observe that the cytoplasmic stiffness and viscosity of serum-starved Swiss 3T3 cells transiently and locally enhances upon treatment with lysophosphatidic acid, and this mechanical behavior follows a trend similar to Rho activity. Furthermore, the time-dependent activation of Rho decreases the degree of microheterogeneity of the cytoplasm. Our results reveal fundamental differences between intracellular elasticity and cellular tension and suggest a critical role for Rho kinase in the regulation of intracellular mechanics.
引用
收藏
页码:3475 / 3484
页数:10
相关论文
共 57 条
[1]   Phosphorylation and activation of myosin by Rho-associated kinase (Rho-kinase) [J].
Amano, M ;
Ito, M ;
Kimura, K ;
Fukata, Y ;
Chihara, K ;
Nakano, T ;
Matsuura, Y ;
Kaibuchi, K .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (34) :20246-20249
[2]   Multiple-particle tracking measurements of heterogeneities in solutions of actin filaments and actin bundles [J].
Apgar, J ;
Tseng, Y ;
Fedorov, E ;
Herwig, MB ;
Almo, SC ;
Wirtz, D .
BIOPHYSICAL JOURNAL, 2000, 79 (02) :1095-1106
[3]   RhoA inactivation by p190RhoGAP regulates cell spreading and migration by promoting membrane protrusion and polarity [J].
Arthur, WT ;
Burridge, K .
MOLECULAR BIOLOGY OF THE CELL, 2001, 12 (09) :2711-2720
[4]   Integrin engagement suppresses RhoA activity via a c-Src-dependent mechanism [J].
Arthur, WT ;
Petch, LA ;
Burridge, K .
CURRENT BIOLOGY, 2000, 10 (12) :719-722
[5]   Marching at the front and dragging behind:: differential α-Vβ3-integrin turnover regulates focal adhesion behavior [J].
Ballestrem, C ;
Hinz, B ;
Imhof, BA ;
Wehrle-Haller, B .
JOURNAL OF CELL BIOLOGY, 2001, 155 (07) :1319-1332
[6]   Rapid stiffening of integrin receptor-actin linkages in endothelial cells stimulated with thrombin: A magnetic bead microrheology study [J].
Bausch, AR ;
Hellerer, U ;
Essler, M ;
Aepfelbacher, M ;
Sackmann, E .
BIOPHYSICAL JOURNAL, 2001, 80 (06) :2649-2657
[7]  
Berg H. C., 1993, RANDOM WALKS BIOL
[8]   Rho GTPases and their effector proteins [J].
Bishop, AL ;
Hall, A .
BIOCHEMICAL JOURNAL, 2000, 348 (02) :241-255
[9]   Stochastic problems in physics and astronomy [J].
Chandrasekhar, S .
REVIEWS OF MODERN PHYSICS, 1943, 15 (01) :0001-0089
[10]   Rho-stimulated contractility drives the formation of stress fibers and focal adhesions [J].
ChrzanowskaWodnicka, M ;
Burridge, K .
JOURNAL OF CELL BIOLOGY, 1996, 133 (06) :1403-1415