Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function

被引:802
作者
Pavani, Sri Rama Prasanna [1 ]
Thompson, Michael A. [2 ]
Biteen, Julie S. [2 ]
Lord, Samuel J. [2 ]
Liu, Na [3 ]
Twieg, Robert J. [3 ]
Piestun, Rafael [1 ]
Moerner, W. E. [2 ]
机构
[1] Univ Colorado, Dept Elect & Comp Engn, Boulder, CO 80309 USA
[2] Stanford Univ, Dept Chem, Stanford, CA 94305 USA
[3] Kent State Univ, Dept Chem, Kent, OH 44242 USA
基金
美国国家科学基金会;
关键词
microscopy; photoactivation; superresolution; computational imaging; PSF engineering; OPTICAL RECONSTRUCTION MICROSCOPY; LIVE CELLS; LOCALIZATION; TRACKING; SUPERRESOLUTION; RESOLUTION; PROBES; FLUOROPHORE; PRECISION; ACCURACY;
D O I
10.1073/pnas.0900245106
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We demonstrate single-molecule fluorescence imaging beyond the optical diffraction limit in 3 dimensions with a wide-field microscope that exhibits a double-helix point spread function (DH-PSF). The DH-PSF design features high and uniform Fisher information and has 2 dominant lobes in the image plane whose angular orientation rotates with the axial (z) position of the emitter. Single fluorescent molecules in a thick polymer sample are localized in single 500-ms acquisitions with 10- to 20-nm precision over a large depth of field (2 mu m) by finding the center of the 2 DH-PSF lobes. By using a photoactivatable fluorophore, repeated imaging of sparse subsets with a DH-PSF microscope provides superresolution imaging of high concentrations of molecules in all 3 dimensions. The combination of optical PSF design and digital postprocessing with photoactivatable fluorophores opens up avenues for improving 3D imaging resolution beyond the Rayleigh diffraction limit.
引用
收藏
页码:2995 / 2999
页数:5
相关论文
共 30 条
[1]  
Abbe E., 1873, Arch. Mikrosk. Anat., V9, P413, DOI DOI 10.1007/BF02956173
[2]   DETECTION AND SPECTROSCOPY OF SINGLE PENTACENE MOLECULES IN A PARA-TERPHENYL CRYSTAL BY MEANS OF FLUORESCENCE EXCITATION [J].
AMBROSE, WP ;
BASCHE, T ;
MOERNER, WE .
JOURNAL OF CHEMICAL PHYSICS, 1991, 95 (10) :7150-7163
[3]   Imaging intracellular fluorescent proteins at nanometer resolution [J].
Betzig, Eric ;
Patterson, George H. ;
Sougrat, Rachid ;
Lindwasser, O. Wolf ;
Olenych, Scott ;
Bonifacino, Juan S. ;
Davidson, Michael W. ;
Lippincott-Schwartz, Jennifer ;
Hess, Harald F. .
SCIENCE, 2006, 313 (5793) :1642-1645
[4]   POSITION MEASUREMENT WITH A RESOLUTION AND NOISE-LIMITED INSTRUMENT [J].
BOBROFF, N .
REVIEW OF SCIENTIFIC INSTRUMENTS, 1986, 57 (06) :1152-1157
[5]   Visualization of the movement of single histidine kinase molecules in live Caulobacter cells [J].
Deich, J ;
Judd, EM ;
McAdams, HH ;
Moerner, WE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (45) :15921-15926
[6]   TRACKING KINESIN-DRIVEN MOVEMENTS WITH NANOMETRE-SCALE PRECISION [J].
GELLES, J ;
SCHNAPP, BJ ;
SHEETZ, MP .
NATURE, 1988, 331 (6155) :450-453
[7]   Depth from diffracted rotation [J].
Greengard, A ;
Schechner, YY ;
Piestun, R .
OPTICS LETTERS, 2006, 31 (02) :181-183
[8]  
HELSENBERG W, 1930, PHYS PRINCIPLES QUAN, P22
[9]   Ultra-high resolution imaging by fluorescence photoactivation localization microscopy [J].
Hess, Samuel T. ;
Girirajan, Thanu P. K. ;
Mason, Michael D. .
BIOPHYSICAL JOURNAL, 2006, 91 (11) :4258-4272
[10]   Nanometric three-dimensional tracking of individual quantum dots in cells [J].
Holtzer, Laurent ;
Meckel, Tobias ;
Schmidt, Thomas .
APPLIED PHYSICS LETTERS, 2007, 90 (05)