On formal quasi-periodic solutions of the Schrodinger equation for a two-level system with a Hamiltonian depending quasi-periodically on time

被引:20
作者
Barata, JCA [1 ]
机构
[1] Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil
关键词
D O I
10.1142/S0129055X00000034
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the Schrodinger equation for a class of two-level atoms in a quasi-periodic external field for large coupling, i.e. for which the energy difference 2 epsilon between the unperturbed levels is sufficiently small. We show that this equation has a solution in terms of a formal power series in epsilon, with coefficients which are quasi-periodical functions of the time, in analogy to the Lindstedt-Poincare series in classical mechanics.
引用
收藏
页码:25 / 64
页数:40
相关论文
共 18 条
[1]  
[Anonymous], 1996, MATH PHYS ELECT J
[2]  
[Anonymous], 2 GRAN SEM COMP PHYS
[3]   Electrons in a lattice with an incommensurate potential [J].
Benfatto, G ;
Gentile, G ;
Mastropietro, V .
JOURNAL OF STATISTICAL PHYSICS, 1997, 89 (3-4) :655-708
[4]  
Bohl P, 1906, J REINE ANGEW MATH, V131, P268
[5]  
Bohr H, 1924, ACTA MATH-DJURSHOLM, V45, P29
[7]  
Bohr H., 1932, COMMENT MATH HELV, V4, P51
[8]  
Bohr H., 1926, Acta Math, V47, P237, DOI [10.1007/BF02543846, DOI 10.1007/BF02543846]
[9]  
CASSELS JWS, 1950, P CAMB PHILOS SOC, V46, P209
[10]   FLOQUET SOLUTIONS FOR THE 1-DIMENSIONAL QUASI-PERIODIC SCHRODINGER-EQUATION [J].
ELIASSON, LH .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 146 (03) :447-482