Optimal control of rigidity parameters of thin inclusions in composite materials

被引:13
作者
Khludnev, A. M. [1 ]
Faella, L. [2 ]
Perugia, C. [3 ]
机构
[1] Novosibirsk State Univ, RAS, Lavrentyev Inst Hydrodynam SB, Novosibirsk 630090, Russia
[2] Univ Cassino & Lazio Meridionale, DIEI Dipartimento Ingn Elettr & Informaz M Scaran, I-03043 Cassino, Italy
[3] Univ Sannio, Dipartimento Sci & Tecnol, I-82100 Benevento, Italy
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2017年 / 68卷 / 02期
关键词
Thin inclusion; Rigid inclusion; Optimal control; Elastic body; Crack; Nonpenetration condition; SHAPE SENSITIVITY-ANALYSIS; ELASTIC BODIES; INTERFACIAL CRACKS; JUNCTION; IDENTIFICATION; PERTURBATIONS; OPTIMIZATION; INTEGRALS; PLATES;
D O I
10.1007/s00033-017-0792-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the paper, an equilibrium problem for an elastic body with a thin elastic and a volume rigid inclusion is analyzed. It is assumed that the thin inclusion conjugates with the rigid inclusion at a given point. Moreover, a delamination of the thin inclusion is assumed. Inequality type boundary conditions are considered at the crack faces to prevent a mutual penetration between the faces. A passage to the limit is justified as the rigidity parameter of the thin inclusion goes to infinity. The main goal of the paper is to analyze an optimal control problem with a cost functional characterizing a deviation of the displacement field from a given function. A rigidity parameter of the thin inclusion serves as a control function. An existence theorem to this problem is proved.
引用
收藏
页数:12
相关论文
共 38 条
  • [1] A PENALTY METHOD FOR TOPOLOGY OPTIMIZATION SUBJECT TO A POINTWISE STATE CONSTRAINT
    Amstutz, Samuel
    [J]. ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2010, 16 (03) : 523 - 544
  • [2] CIARLET PG, 1989, J MATH PURE APPL, V68, P261
  • [3] Optimal control for a second-order linear evolution problem in a domain with oscillating boundary
    De Maio, U.
    Faella, L.
    Perugia, C.
    [J]. COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2015, 60 (10) : 1392 - 1410
  • [4] HOMOGENIZATION OF QUASILINEAR OPTIMAL CONTROL PROBLEMS INVOLVING A THICK MULTILEVEL JUNCTION OF TYPE 3:2:1
    Durante, Tiziana
    Mel'nyk, Taras A.
    [J]. ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2012, 18 (02) : 583 - 610
  • [5] Optimal control for evolutionary imperfect transmission problems
    Faella, Luisa
    Perugia, Carmen
    [J]. BOUNDARY VALUE PROBLEMS, 2015,
  • [6] Junction of elastic plates and beams
    Gaudiello, Antonio
    Monneau, Regis
    Mossino, Jacqueline
    Murat, Francois
    Sili, Ali
    [J]. ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2007, 13 (03) : 419 - 457
  • [7] Junction in a thin multidomain for a fourth order problem
    Gaudiello, Antonio
    Zappale, Elvlra
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2006, 16 (12) : 1887 - 1918
  • [8] Application of invariant integrals to the problems of defect identification
    Goldstein, Robert V.
    Shifrin, Efim I.
    Shushpannikov, Pavel S.
    [J]. INTERNATIONAL JOURNAL OF FRACTURE, 2007, 147 (1-4) : 45 - 54
  • [9] On the control of crack growth in elastic media
    Hild, Patrick
    Muench, Arnaud
    Ousset, Yves
    [J]. COMPTES RENDUS MECANIQUE, 2008, 336 (05): : 422 - 427
  • [10] On delaminated thin Timoshenko inclusions inside elastic bodies
    Itou, H.
    Khludnev, A. M.
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (17) : 4980 - 4993