A PDE Approach to Data-Driven Sub-Riemannian Geodesics in SE(2)

被引:40
作者
Bekkers, E. J. [1 ]
Duits, R. [1 ,2 ]
Mashtakov, A. [1 ]
Sanguinetti, G. R. [2 ]
机构
[1] Tech Univ Eindhoven, BMIA, Dept Biomed Engn, NL-5600 MB Eindhoven, Netherlands
[2] Tech Univ Eindhoven, CASA, Dept Math & Comp Sci, NL-5600 MB Eindhoven, Netherlands
来源
SIAM JOURNAL ON IMAGING SCIENCES | 2015年 / 8卷 / 04期
基金
欧洲研究理事会;
关键词
roto-translation group; Hamilton-Jacobi equations; vessel tracking; sub-Riemannian geometry; morphological scale spaces; VISCOSITY SOLUTIONS; RECONSTRUCTION; MOTIONS; CURVES; PATHS;
D O I
10.1137/15M1018460
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a new flexible wavefront propagation algorithm for the boundary value problem for sub-Riemannian (SR) geodesics in the roto-translation group SE(2) = R-2 x S-1 with a metric tensor depending on a smooth external cost C : SE(2). [delta,1], delta > 0, computed from image data. The method consists of a first step where an SR-distance map is computed as a viscosity solution of a Hamilton-Jacobi-Bellman system derived via Pontryagin's maximum principle (PMP). Subsequent backward integration, again relying on PMP, gives the SR-geodesics. For C = 1 we show that our method produces the global minimizers. Comparison with exact solutions shows a remarkable accuracy of the SR-spheres and the SR-geodesics. We present numerical computations of Maxwell points and cusp points, which we again verify for the uniform cost case C = 1. Regarding image analysis applications, trackings of elongated structures in retinal and synthetic images show that our line tracking generically deals with crossings. We show the benefits of including the SR-geometry.
引用
收藏
页码:2740 / 2770
页数:31
相关论文
共 40 条
  • [1] Akian M., 1994, 11 INT C ANAL OPTIMI, P302
  • [2] [Anonymous], 1998, GRADUATE STUD MATH
  • [3] [Anonymous], 1999, Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision and Materials Science
  • [4] [Anonymous], 1980, Functional Analysis
  • [5] [Anonymous], 2002, MATH SURVEYS MONOGRA
  • [6] Bayen AM, 2001, IEEE DECIS CONTR P, P1657, DOI 10.1109/CDC.2001.981139
  • [7] Bekkers E. J., 2015, Scale Space and Variational Methods in Computer Vision. 5th International Conference, SSVM 2015. Proceedings: LNCS 9087, P613, DOI 10.1007/978-3-319-18461-6_49
  • [8] Bekkers E, 2015, LECT NOTES COMPUT SC, V8932, P464, DOI 10.1007/978-3-319-14612-6_34
  • [9] A Multi-Orientation Analysis Approach to Retinal Vessel Tracking
    Bekkers, Erik
    Duits, Remco
    Berendschot, Tos
    Romeny, Bart ter Haar
    [J]. JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2014, 49 (03) : 583 - 610
  • [10] A Tangent Bundle Theory for Visual Curve Completion
    Ben-Yosef, Guy
    Ben-Shahar, Ohad
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (07) : 1263 - 1280