Handling missing MRI sequences in deep learning segmentation of brain metastases: a multicenter study

被引:37
作者
Grovik, Endre [1 ,2 ,3 ]
Yi, Darvin [4 ]
Iv, Michael [2 ]
Tong, Elizabeth [2 ]
Nilsen, Line Brennhaug [1 ]
Latysheva, Anna [5 ]
Saxhaug, Cathrine [5 ]
Jacobsen, Kari Dolven [6 ]
Helland, Aslaug [6 ]
Emblem, Kyrre Eeg [1 ]
Rubin, Daniel L. [4 ]
Zaharchuk, Greg [2 ]
机构
[1] Oslo Univ Hosp, Dept Diagnost Phys, Oslo, Norway
[2] Stanford Univ, Dept Radiol, Stanford, CA 94305 USA
[3] Univ South Eastern Norway, Fac Hlth & Social Sci, Drammen, Norway
[4] Stanford Univ, Dept Biomed Data Sci, Stanford, CA 94305 USA
[5] Oslo Univ Hosp, Dept Radiol & Nucl Med, Oslo, Norway
[6] Oslo Univ Hosp, Dept Oncol, Oslo, Norway
基金
欧洲研究理事会;
关键词
CRITERIA; NETWORK;
D O I
10.1038/s41746-021-00398-4
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
The purpose of this study was to assess the clinical value of a deep learning (DL) model for automatic detection and segmentation of brain metastases, in which a neural network is trained on four distinct MRI sequences using an input-level dropout layer, thus simulating the scenario of missing MRI sequences by training on the full set and all possible subsets of the input data. This retrospective, multicenter study, evaluated 165 patients with brain metastases. The proposed input-level dropout (ILD) model was trained on multisequence MRI from 100 patients and validated/tested on 10/55 patients, in which the test set was missing one of the four MRI sequences used for training. The segmentation results were compared with the performance of a state-of-the-art DeepLab V3 model. The MR sequences in the training set included pre-gadolinium and post-gadolinium (Gd) T1-weighted 3D fast spin echo, post-Gd T1-weighted inversion recovery (IR) prepped fast spoiled gradient echo, and 3D fluid attenuated inversion recovery (FLAIR), whereas the test set did not include the IR prepped image-series. The ground truth segmentations were established by experienced neuroradiologists. The results were evaluated using precision, recall, Intersection over union (IoU)-score and Dice score, and receiver operating characteristics (ROC) curve statistics, while the Wilcoxon rank sum test was used to compare the performance of the two neural networks. The area under the ROC curve (AUC), averaged across all test cases, was 0.989 +/- 0.029 for the ILD-model and 0.989 +/- 0.023 for the DeepLab V3 model (p = 0.62). The ILD-model showed a significantly higher Dice score (0.795 +/- 0.104 vs. 0.774 +/- 0.104, p = 0.017), and IoU-score (0.561 +/- 0.225 vs. 0.492 +/- 0.186, p < 0.001) compared to the DeepLab V3 model, and a significantly lower average false positive rate of 3.6/patient vs. 7.0/patient (p < 0.001) using a 10 mm(3) lesion-size limit. The ILD-model, trained on all possible combinations of four MRI sequences, may facilitate accurate detection and segmentation of brain metastases on a multicenter basis, even when the test cohort is missing input MRI sequences.
引用
收藏
页数:7
相关论文
共 24 条
[11]   Response assessment criteria for brain metastases: proposal from the RANO group [J].
Lin, Nancy U. ;
Lee, Eudocia Q. ;
Aoyama, Hidefumi ;
Barani, Igor J. ;
Barboriak, Daniel P. ;
Baumert, Brigitta G. ;
Bendszus, Martin ;
Brown, Paul D. ;
Camidge, D. Ross ;
Chang, Susan M. ;
Dancey, Janet ;
de Vries, Elisabeth G. E. ;
Gaspar, Laurie E. ;
Harris, Gordon J. ;
Hodi, F. Stephen ;
Kalkanis, Steven N. ;
Linskey, Mark E. ;
Macdonald, David R. ;
Margolin, Kim ;
Mehta, Minesh P. ;
Schiff, David ;
Soffietti, Riccardo ;
Suh, John H. ;
van den Bent, Martin J. ;
Vogelbaum, Michael A. ;
Wen, Patrick Y. .
LANCET ONCOLOGY, 2015, 16 (06) :E270-E278
[12]   A deep convolutional neural network-based automatic delineation strategy for multiple brain metastases stereotactic radiosurgery [J].
Liu, Yan ;
Stojadinovic, Strahinja ;
Hrycushko, Brian ;
Wardak, Zabi ;
Lau, Steven ;
Lu, Weiguo ;
Yan, Yulong ;
Jiang, Steve B. ;
Zhen, Xin ;
Timmerman, Robert ;
Nedzi, Lucien ;
Gu, Xuejun .
PLOS ONE, 2017, 12 (10)
[13]   An overview of deep learning in medical imaging focusing on MRI [J].
Lundervold, Alexander Selvikvag ;
Lundervold, Arvid .
ZEITSCHRIFT FUR MEDIZINISCHE PHYSIK, 2019, 29 (02) :102-127
[14]   Deep learning in radiology: An overview of the concepts and a survey of the state of the art with focus on MRI [J].
Mazurowski, Maciej A. ;
Buda, Mateusz ;
Saha, Ashirbani ;
Bashir, Mustafa R. .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2019, 49 (04) :939-954
[15]   The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) [J].
Menze, Bjoern H. ;
Jakab, Andras ;
Bauer, Stefan ;
Kalpathy-Cramer, Jayashree ;
Farahani, Keyvan ;
Kirby, Justin ;
Burren, Yuliya ;
Porz, Nicole ;
Slotboom, Johannes ;
Wiest, Roland ;
Lanczi, Levente ;
Gerstner, Elizabeth ;
Weber, Marc-Andre ;
Arbel, Tal ;
Avants, Brian B. ;
Ayache, Nicholas ;
Buendia, Patricia ;
Collins, D. Louis ;
Cordier, Nicolas ;
Corso, Jason J. ;
Criminisi, Antonio ;
Das, Tilak ;
Delingette, Herve ;
Demiralp, Cagatay ;
Durst, Christopher R. ;
Dojat, Michel ;
Doyle, Senan ;
Festa, Joana ;
Forbes, Florence ;
Geremia, Ezequiel ;
Glocker, Ben ;
Golland, Polina ;
Guo, Xiaotao ;
Hamamci, Andac ;
Iftekharuddin, Khan M. ;
Jena, Raj ;
John, Nigel M. ;
Konukoglu, Ender ;
Lashkari, Danial ;
Mariz, Jose Antonio ;
Meier, Raphael ;
Pereira, Sergio ;
Precup, Doina ;
Price, Stephen J. ;
Raviv, Tammy Riklin ;
Reza, Syed M. S. ;
Ryan, Michael ;
Sarikaya, Duygu ;
Schwartz, Lawrence ;
Shin, Hoo-Chang .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2015, 34 (10) :1993-2024
[16]   Brain Tumor Segmentation Using Convolutional Neural Networks in MRI Images [J].
Pereira, Sergio ;
Pinto, Adriano ;
Alves, Victor ;
Silva, Carlos A. .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2016, 35 (05) :1240-1251
[17]  
Schaefer PW, 1996, NEUROSURG CLIN N AM, V7, P393
[18]  
Srivastava N, 2014, J MACH LEARN RES, V15, P1929
[19]   Artificial Intelligence and Machine Learning in Radiology: Opportunities, Challenges, Pitfalls, and Criteria for Success [J].
Thrall, James H. ;
Li, Xiang ;
Li, Quanzheng ;
Cruz, Cinthia ;
Do, Synho ;
Dreyer, Keith ;
Brink, James .
JOURNAL OF THE AMERICAN COLLEGE OF RADIOLOGY, 2018, 15 (03) :504-508
[20]   Al for medical imaging goes deep [J].
Ting, Daniel S. W. ;
Liu, Yong ;
Burlina, Philippe ;
Xu, Xinxing ;
Bressler, Neil M. ;
Wong, Tien Y. .
NATURE MEDICINE, 2018, 24 (05) :539-540