Experiment and modeling for performance of a spiral-wound pressure-retarded osmosis membrane module

被引:19
|
作者
Lee, Sungyun [1 ]
Kim, Yu Chang [1 ,2 ]
Park, Sang-Jin [1 ]
Lee, Sook-Kyung [3 ]
Choi, Hyu-Chang [3 ]
机构
[1] Korea Inst Machinery & Mat, Dept Extreme Thermal Syst, Daejeon 305343, South Korea
[2] Univ Sci & Technol, Environm & Energy Mech Engn, Daejeon 305350, South Korea
[3] KHNP Cent Res Inst, Daejeon 305343, South Korea
关键词
Modeling; Pressure-retarded osmosis; Power density; Spiral-wound module; HOLLOW-FIBER MEMBRANES; POWER-GENERATION; OSMOTIC POWER; ENERGY; TEMPERATURE; IMPACT; DESALINATION; DIFFERENCE;
D O I
10.1080/19443994.2015.1043494
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Pressure-retarded osmosis (PRO) process utilizes the transport of water through a semipermeable membrane to generate electricity from salinity gradient resources. Recent PRO research has shown the feasibility of PRO technologies in laboratory-scale experiments, but there is currently a lack of experimental pilot-scale investigations to ensure the success of PRO technology. This study was conducted to predict the power density of a PRO module using PRO membrane transport properties such as water permeability, salt permeability, and membrane structure parameter. The performance of an 8040 spiral-wound PRO module was experimentally investigated, and the results were compared with the simulated prediction. The maximum power density of the investigated PRO module was 1.8Wm(-2) at 10.4bar using 35gL(-1) of NaCl as a draw solution. At the outlet of the module, the concentration changes of the draw and feed solutions were observed, suggesting a gradual decrease of membrane power density inside the PRO module. The simulation model, which considered concentration changes of draw and feed solutions, reverse salt flux, and mass transport coefficient inside the module, closely estimated the performance of the PRO module. However, the model overestimated the power density at high hydraulic pressure difference. It was concluded that severe increase of reverse salt flux at a high hydraulic pressure difference negatively contributed to the performance of the PRO module.
引用
收藏
页码:10101 / 10110
页数:10
相关论文
共 50 条
  • [41] Effects of reverse solute diffusion on membrane biofouling in pressure-retarded osmosis processes
    Sun, Peng-Fei
    Jang, Yongsun
    Ham, So-Young
    Ryoo, HwaSoo
    Park, Hee-Deung
    DESALINATION, 2021, 512
  • [42] INTERNAL POLARIZATION IN THE POROUS SUBSTRUCTURE OF A SEMIPERMEABLE MEMBRANE UNDER PRESSURE-RETARDED OSMOSIS
    MEHTA, GD
    LOEB, S
    JOURNAL OF MEMBRANE SCIENCE, 1978, 4 (02) : 261 - 265
  • [43] Effect of initial feed and draw flowrates on performance of an 8040 spiral-wound forward osmosis membrane element
    Kook, Seungho
    Kim, Jungeun
    Kim, Sung-Jo
    Lee, Jinwoo
    Han, Doseon
    Phuntsho, Sherub
    Shim, Wang-Geun
    Hwang, Moonhyun
    Shon, Ho Kyong
    Kim, In S.
    DESALINATION AND WATER TREATMENT, 2017, 72 : 1 - 12
  • [44] Nanofiber Supported Thin-Film Composite Membrane for Pressure-Retarded Osmosis
    Nhu-Ngoc Bui
    McCutcheon, Jeffrey R.
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2014, 48 (07) : 4129 - 4136
  • [45] Concentration polarization effect and preferable membrane configuration at pressure-retarded osmosis operation
    Thi Phuong Nga Nguyen
    Jun, Byung-Moon
    Park, Hyung Gyu
    Han, Sang-Woo
    Kim, Yu-Kyung
    Lee, Hyung Kae
    Kwon, Young-Nam
    DESALINATION, 2016, 389 : 58 - 67
  • [46] Energy recovery modeling of pressure-retarded osmosis systems with membrane modules compatible with high salinity draw streams
    Manzoor, Husnain
    Selam, Muaz A.
    Adham, Samer
    Shon, Ho Kyong
    Castier, Marcelo
    Abdel-Wahab, Ahmed
    DESALINATION, 2020, 493
  • [47] MEMBRANES FOR POWER-GENERATION BY PRESSURE-RETARDED OSMOSIS
    LEE, KL
    BAKER, RW
    LONSDALE, HK
    JOURNAL OF MEMBRANE SCIENCE, 1981, 8 (02) : 141 - 171
  • [48] Optimization of Reverse Osmosis Networks with Spiral-Wound Modules
    Du, Yawei
    Xie, Lixin
    Wang, Yuxin
    Xu, Yingjun
    Wang, Shichang
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2012, 51 (36) : 11764 - 11777
  • [49] THE DEVELOPMENT OF THE SPIRAL-WOUND REVERSE OSMOSIS(RO) MODULES
    HU, BC
    REN, DG
    XU, RG
    YU, DY
    DESALINATION, 1985, 54 (NOV) : 105 - 116
  • [50] Performance enhancement of spiral-wound reverse osmosis membrane elements with novel diagonal-flow feed channels
    Lin, Weichen
    Lei, Jing
    Wang, Qiao
    Wang, Xiao-mao
    Huang, Xia
    DESALINATION, 2022, 523