Simultaneous Polymerization Enabled the Confinement of Size-Adjustable TiO2 Nanocrystals in S-Doped Carbons for High-Rate Anode Materials

被引:15
作者
Gao, Pengyuan [1 ]
Lu, Yun [2 ]
Deng, Shuyi [1 ]
Cui, Xun [1 ]
Zhang, Qing [3 ]
Yang, Yingkui [1 ,2 ,3 ]
机构
[1] South Cent Univ Nationalities, Sch Chem & Mat Sci, Hubei Engn Technol Res Ctr Energy Polymer Mat, Wuhan 430074, Hubei, Peoples R China
[2] Hubei Univ, Sch Mat Sci & Engn, Wuhan 430062, Hubei, Peoples R China
[3] South Cent Univ Nationalities, Sch Chem & Mat Sci, Hubei Key Lab Catalysis & Mat Sci, Wuhan 430074, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
anode; lithium-ion batteries; nanocrystals; simultaneous polymerization; titanium dioxide; TITANIUM-DIOXIDE SPHERES; HIGH-RATE PERFORMANCE; LITHIUM-ION BATTERY; LI-ION; IN-SITU; ELECTRODE MATERIALS; GRAPHENE AEROGELS; HIGH-CAPACITY; COMPOSITE; STORAGE;
D O I
10.1002/ente.201900247
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Homogeneous confinement of metal oxide nanoparticles into the heteroatom-doped carbon matrix is highly desirable but remains challenging to develop high-performance anode materials. Herein, a facile simultaneous polymerization of 2-thiophenemethanol (ThM) and titanium ethoxide (TTEO) is proposed to incorporate ultrafine anatase TiO2 nanocrystals into the continuous S-doped carbon framework by carbonizing the as-produced TiO2/poly(2-thiophenemethanol) composites. This in situ crafting process spatially suppresses the growth of TiO2 by the polymerization of ThM, thus producing size-adjustable TiO2 nanocrystals (5-50 nm) by tailoring the ratio of TTEO to ThM. It is found that smaller TiO2 nanocrystals are generated using the lower TTEO-to-ThM ratio. When used as lithium-ion batteries (LIBs) anode, TiO2/S-doped carbon (TSC) shows larger reversible capacity, superior rate capability, and better cycling stability compared to pure TiO2. A typical TSC with the smallest TiO2 nanocrystals (8 nm) shows the reversible capacity as high as 386 mAh g(-1) at 50 mA g(-1), and retains 55% of initial capacity at 500 mA g(-1), and 96.8% capacity after 500 cycles at 1000 mA g(-1). The excellent electrochemical performance is attributed to the shortened ion diffusion path of ultrafine TiO2 and the improved electronic conductivity, structural stability, and surface/interface nature by the S-doped carbon matrix.
引用
收藏
页数:8
相关论文
共 76 条
  • [1] Nitrogen and Sulfur Codoped Graphene: Multifunctional Electrode Materials for High-Performance Li-Ion Batteries and Oxygen Reduction Reaction
    Ai, Wei
    Luo, Zhimin
    Jiang, Jian
    Zhu, Jianhui
    Du, Zhuzhu
    Fan, Zhanxi
    Xie, Linghai
    Zhang, Hua
    Huang, Wei
    Yu, Ting
    [J]. ADVANCED MATERIALS, 2014, 26 (35) : 6186 - +
  • [2] Multiconstituent Synthesis of LiFePO4/C Composites with Hierarchical Porosity as Cathode Materials for Lithium Ion Batteries
    Anh Vu
    Stein, Andreas
    [J]. CHEMISTRY OF MATERIALS, 2011, 23 (13) : 3237 - 3245
  • [3] Fully reversible homogeneous and heterogeneous Li storage in RuO2 with high capacity
    Balaya, P
    Li, H
    Kienle, L
    Maier, J
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2003, 13 (08) : 621 - 625
  • [4] Titanium dioxide@titanium nitride nanowires on carbon cloth with remarkable rate capability for flexible lithium-ion batteries
    Balogun, Muhammad-Sadeeq
    Li, Cheng
    Zeng, Yinxiang
    Yu, Minghao
    Wu, Qili
    Wu, Mingmei
    Lu, Xihong
    Tong, Yexiang
    [J]. JOURNAL OF POWER SOURCES, 2014, 272 : 946 - 953
  • [5] Facile Synthesis of Mesoporous TiO2-C Nanosphere as an Improved Anode Material for Superior High Rate 1.5 V Rechargeable Li Ion Batteries Containing LiFePO4-C Cathode
    Cao, Fei-Fei
    Wu, Xing-Long
    Xin, Sen
    Guo, Yu-Guo
    Wan, Li-Jun
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (22) : 10308 - 10313
  • [6] S-doped carbon@TiO2 to store Li+/Na+ with high capacity and long life-time
    Chen, Changmiao
    Yang, Yincai
    Ding, Shuangshuang
    Wei, Zengxi
    Tang, Xuan
    Li, Pengchao
    Wang, Taihong
    Cao, Guozhong
    Zhang, Ming
    [J]. ENERGY STORAGE MATERIALS, 2018, 13 : 215 - 222
  • [7] Titanium-Based Anode Materials for Safe Lithium-Ion Batteries
    Chen, Zonghai
    Belharouak, Ilias
    Sun, Y-K
    Amine, Khalil
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2013, 23 (08) : 959 - 969
  • [8] Conformal coating of TiO2 nanorods on a 3-D CNT scaffold by using a CNT film as a nanoreactor: a free-standing and binder-free Li-ion anode
    Cheng, Jianli
    Wang, Bin
    Xin, Huolin L.
    Kim, Chunjoong
    Nie, Fude
    Li, Xiaodong
    Yang, Guangcheng
    Huang, Hui
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (08) : 2701 - 2707
  • [9] Green energy storage materials: Nanostructured TiO2 and Sn-based anodes for lithium-ion batteries
    Deng, Da
    Kim, Min Gyu
    Lee, Jim Yang
    Cho, Jaephil
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2009, 2 (08) : 818 - 837
  • [10] Twin Polymerization-a New Principle for Hybrid Material Synthesis
    Ebert, Thomas
    Seifert, Andreas
    Spange, Stefan
    [J]. MACROMOLECULAR RAPID COMMUNICATIONS, 2015, 36 (18) : 1623 - 1639