Two-dimensional Materials for Osmotic Energy Conversion

被引:4
|
作者
Xin, Weiwen [1 ,2 ]
Wen, Liping [1 ,2 ]
机构
[1] Chinese Acad Sci, Tech Inst Phys & Chem, CAS Key Lab Bioinspired Mat & Interfacial Sci, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Future Technol, Beijing 100049, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Two-dimensional material; Osmotic energy conversion; Ion transport; Nanochannels; Composite membrane; SUSTAINABLE POWER-GENERATION; ION CURRENT RECTIFICATION; GRAPHENE OXIDE; REVERSE ELECTRODIALYSIS; CONCENTRATION-GRADIENT; HETEROGENEOUS MEMBRANE; SALINITY GRADIENTS; 2D MATERIALS; TRANSPORT; DNA;
D O I
10.7503/cjcu20200605
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Osmotic energy conversion, the extraction of power from the salt difference between river water and seawater, is a crucial way to solve the energy crisis in future. Osmotic energy attracts extensive attention and research due to its huge reserves, easy accessibility, and sustainability. Ion-exchange membrane is a key component in reverse electrodialysis (RED) technology for osmotic energy conversion, which immensely impacts the performance of osmotic energy conversion. Two-dimensional (2D) materials such as graphene, graphene oxide, molybdenum disulfide, various frame materials and their functionalized composites have become prospective materials for harvesting osmotic energy on account of their excellent ion selective transport , nanoscale pores or channels, abundant functional groups, and modifiability. In this review, we summarize the types of 2D materials as ion transport channels and their corresponding transport mechanisms. Furthermore, we also discuss the current state of the art in designs and show the applications of 2D materials and their composites in osmotic energy conversion. Finally, we overview the challenges of 2D materials in osmotic energy conversion and propose future directions of research.
引用
收藏
页码:445 / 455
页数:11
相关论文
共 70 条
  • [1] Abraham J, 2017, NAT NANOTECHNOL, V12, P546, DOI [10.1038/nnano.2017.21, 10.1038/NNANO.2017.21]
  • [2] A Poisson/Nernst-Planck model for ionic transport through synthetic conical nanopores
    Cervera, J
    Schiedt, B
    Ramírez, P
    [J]. EUROPHYSICS LETTERS, 2005, 71 (01): : 35 - 41
  • [3] Bio-inspired Nanocomposite Membranes for Osmotic Energy Harvesting
    Chen, Cheng
    Liu, Dan
    He, Li
    Qin, Si
    Wang, Jiemin
    Razal, Joselito M.
    Kotov, Nicholas A.
    Lei, Weiwei
    [J]. JOULE, 2020, 4 (01) : 247 - 261
  • [4] Ultrathin and Robust Silk Fibroin Membrane for High-Performance Osmotic Energy Conversion
    Chen, Jianjun
    Xin, Weiwen
    Kong, Xiang-Yu
    Qian, Yongchao
    Zhao, Xiaolu
    Chen, Weipeng
    Sun, Yue
    Wu, Yadong
    Jian, Lei
    Wen, Liping
    [J]. ACS ENERGY LETTERS, 2020, 5 (03) : 742 - 748
  • [5] Ion sieving in graphene oxide membranes via cationic control of interlayer spacing
    Chen, Liang
    Shi, Guosheng
    Shen, Jie
    Peng, Bingquan
    Zhang, Bowu
    Wang, Yuzhu
    Bian, Fenggang
    Wang, Jiajun
    Li, Deyuan
    Qian, Zhe
    Xu, Gang
    Liu, Gongping
    Zeng, Jianrong
    Zhang, Lijuan
    Yang, Yizhou
    Zhou, Guoquan
    Wu, Minghong
    Jin, Wanqin
    Li, Jingye
    Fang, Haiping
    [J]. NATURE, 2017, 550 (7676) : 415 - 418
  • [6] Low-voltage electrostatic modulation of ion diffusion through layered graphene-based nanoporous membranes
    Cheng, Chi
    Jiang, Gengping
    Simon, George Philip
    Liu, Jefferson Zhe
    Li, Dan
    [J]. NATURE NANOTECHNOLOGY, 2018, 13 (08) : 685 - +
  • [7] Nanofluidic diodes
    Cheng, Li-Jing
    Guo, L. Jay
    [J]. CHEMICAL SOCIETY REVIEWS, 2010, 39 (03) : 923 - 938
  • [8] Cipollina A., 2016, Sustainable Energy from Salinity Gradients, V5nd, P135
  • [9] Practical Potential of Reverse Electrodialysis As Process for Sustainable Energy Generation
    Dlugolecki, Piotr
    Gambier, Antoine
    Nijmeijer, Kitty
    Wessling, Matthias
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2009, 43 (17) : 6888 - 6894
  • [10] Size effect in ion transport through angstrom-scale slits
    Esfandiar, A.
    Radha, B.
    Wang, F. C.
    Yang, Q.
    Hu, S.
    Garaj, S.
    Nair, R. R.
    Geim, A. K.
    Gopinadhan, K.
    [J]. SCIENCE, 2017, 358 (6362) : 511 - 513