Sharp estimates in Ruelle theorems for matrix transfer operators

被引:8
作者
Campbell, J [1 ]
Latushkin, Y [1 ]
机构
[1] UNIV MISSOURI,DEPT MATH,COLUMBIA,MO 65211
关键词
D O I
10.1007/s002200050095
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A matrix coefficient transfer operator (L Phi)(x) = Sigma phi(y)Phi(y), y epsilon f(-1)(x) on the space of C-r-sections of an m-dimensional vector bundle over n-dimensional compact manifold is considered. The spectral radius of L is estimated by exp (sup{h(v) + lambda(v) : v Sigma M}) and the essential spectral radius by exp (sup{h(v) + lambda(v) - r.chi(v): v epsilon M)). Here M is the set of ergodic f-invariant measures, and for v epsilon M, h(v) is the measure theoretic entropy of f, lambda(v) is the largest Lyapunov exponent of the cocycle over f generated by phi, and chi(v) is the smallest Lyapunov exponent of the differential of f.
引用
收藏
页码:379 / 396
页数:18
相关论文
共 38 条
[1]  
ABRAMOVICH YA, 1992, PITMAN RES NOTES, V277
[2]  
Antonevich A.B., 1983, IZV AN SSSR M, V47, P915, DOI 10.1070/IM1984v023n02ABEH001464
[3]  
Antonevich A. B., 1985, MATH USSR SB, V52, P1
[4]  
ANTONEVICH AB, 1982, DOKL AKAD NAUK SSSR+, V264, P1033
[5]  
ANTONEVICH AB, 1996, ADV APPL, V83
[6]  
BALADI V, 1995, ANN I H POINCARE-PHY, V62, P251
[7]   ZETA-FUNCTIONS AND TRANSFER OPERATORS FOR PIECEWISE MONOTONE TRANSFORMATIONS [J].
BALADI, V ;
KELLER, G .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 127 (03) :459-477
[8]  
BALADI V, 1995, NATO ADV SCI I C-MAT, V464, P1
[9]   Transfer operators acting on Zygmund functions [J].
Baladi, V ;
Jiang, YP ;
Lanford, OE .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 348 (04) :1599-1615
[10]  
Bowen R., 1975, LECT NOTES MATH, V470