Saliency Optimization Integrated Robust Background Detection with Global Ranking

被引:1
作者
Zhang, Zipeng [1 ]
Liang, Yixiao [1 ]
Zheng, Jian [1 ]
Li, Kai [1 ]
Ding, Zhuanlian [1 ,2 ]
Sun, Dengdi [2 ]
机构
[1] Anhui Univ, Sch Internet, Hefei 230039, Peoples R China
[2] Anhui Univ, Sch Comp Sci & Technol, Minist Educ, Key Lab Intelligent Comp & Signal Proc, Hefei 230601, Peoples R China
来源
INTELLIGENCE SCIENCE AND BIG DATA ENGINEERING: VISUAL DATA ENGINEERING, PT I | 2019年 / 11935卷
基金
中国国家自然科学基金;
关键词
Saliency detection; Markov chain; Robust background;
D O I
10.1007/978-3-030-36189-1_43
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Image saliency detection plays an important role in the field of computer vision. In order to make the saliency detection achieve better results, this paper proposes an algorithm that combines the global cue with the robust background prior measurement. Specifically, we first get a global ranking of superpixels by absorbing time in Markov chain, which is the absorbing nodes represent the superpixels of the fictitious boundary, and the transient nodes denote the others. Then, the global similarity of transient node can be measured by its absorbing time, so a global ranking for each transient node can be calculated, which is called as global cue in this paper. Finally, considering the remarkable energy optimization model, we integrate the robust background prior measurement with calculated global cue to form a new optimization model for saliency detection. In conclusion, our method is better than some typical significant detection algorithms on several datasets through the experimental verification.
引用
收藏
页码:517 / 528
页数:12
相关论文
共 26 条
[1]   SLIC Superpixels Compared to State-of-the-Art Superpixel Methods [J].
Achanta, Radhakrishna ;
Shaji, Appu ;
Smith, Kevin ;
Lucchi, Aurelien ;
Fua, Pascal ;
Suesstrunk, Sabine .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (11) :2274-2281
[2]  
Achanta R, 2009, PROC CVPR IEEE, P1597, DOI 10.1109/CVPRW.2009.5206596
[3]  
Alexe B, 2010, PROC CVPR IEEE, P73, DOI 10.1109/CVPR.2010.5540226
[4]  
Borji A, 2012, PROC CVPR IEEE, P470, DOI 10.1109/CVPR.2012.6247710
[5]  
Frintrop S, 2005, LECT NOTES COMPUT SC, V3663, P117
[6]  
Gao D., 2004, P ADV NEUR INF PROC, V17, P481
[7]  
Harel J., 2006, Advances in neural information processing systems, P545, DOI DOI 10.7551/MITPRESS/7503.001.0001
[8]   Optimal spectrum sharing for multi-hop software defined radio networks [J].
Hou, Y. Thomas ;
Shi, Yi ;
Sherali, Hanif D. .
INFOCOM 2007, VOLS 1-5, 2007, :1-+
[9]   Feature combination strategies for saliency-based visual attention systems [J].
Itti, L ;
Koch, C .
JOURNAL OF ELECTRONIC IMAGING, 2001, 10 (01) :161-169
[10]   Saliency Detection via Absorbing Markov Chain [J].
Jiang, Bowen ;
Zhang, Lihe ;
Lu, Huchuan ;
Yang, Chuan ;
Yang, Ming-Hsuan .
2013 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2013, :1665-1672