Nonlinear frequency combs generated by cnoidal waves in microring resonators

被引:29
作者
Qi, Zhen [1 ]
D'Aguanno, Giuseppe [1 ,2 ]
Menyuk, Curtis R. [1 ]
机构
[1] Univ Maryland Baltimore Cty, Dept Comp Sci & Elect Engn, 1000 Hilltop Circle, Baltimore, MD 21250 USA
[2] Univ Texas Austin, Dept Elect & Comp Engn, Austin, TX 78712 USA
关键词
MICRORESONATORS;
D O I
10.1364/JOSAB.34.000785
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Cnoidal waves are the periodic analog of solitons. Like solitons, they can be generated in microresonators and correspond to frequency combs. The generation of frequency combs in nonlinear microresonators is modeled by the Lugiato-Lefever equation. In this paper, we study the Lugiato-Lefever equation for a microresonator in the anomalous dispersion regime. In the lossless case, we show that the cnoidal waves can be expressed as a combination of Jacobi elliptic functions. These solutions reduce to known soliton-like solutions in particular cases. The properties of cnoidal waves in the realistic lossy case and their potential uses are also discussed. (C) 2017 Optical Society of America
引用
收藏
页码:785 / 794
页数:10
相关论文
共 21 条
[1]   Universal triangular spectra in parametrically-driven systems [J].
Akhmediev, Nail ;
Ankiewicz, Adrian ;
Soto-Crespo, J. M. ;
Dudley, John M. .
PHYSICS LETTERS A, 2011, 375 (03) :775-779
[2]   Existence and stability chart for the ac-driven, damped nonlinear Schrodinger solitons [J].
Barashenkov, IV ;
Smirnov, YS .
PHYSICAL REVIEW E, 1996, 54 (05) :5707-5725
[3]  
Byrd P., 1971, Grundlehren der mathematischen Wissenschaften
[4]   Spatiotemporal Lugiato-Lefever formalism for Kerr-comb generation in whispering-gallery-mode resonators [J].
Chembo, Yanne K. ;
Menyuk, Curtis R. .
PHYSICAL REVIEW A, 2013, 87 (05)
[5]   Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato-Lefever model [J].
Coen, Stephane ;
Randle, Hamish G. ;
Sylvestre, Thibaut ;
Erkintalo, Miro .
OPTICS LETTERS, 2013, 38 (01) :37-39
[6]   Nonlinear mode coupling in whispering-gallery-mode resonators [J].
D'Aguanno, Giuseppe ;
Menyuk, Curtis R. .
PHYSICAL REVIEW A, 2016, 93 (04)
[7]   Optical frequency comb generation from a monolithic microresonator [J].
Del'Haye, P. ;
Schliesser, A. ;
Arcizet, O. ;
Wilken, T. ;
Holzwarth, R. ;
Kippenberg, T. J. .
NATURE, 2007, 450 (7173) :1214-1217
[8]  
Del'Haye P, 2016, NAT PHOTONICS, V10, P516, DOI [10.1038/nphoton.2016.105, 10.1038/NPHOTON.2016.105]
[9]   TIME-DEPENDENT PROPAGATION OF HIGH-ENERGY LASER-BEAMS THROUGH ATMOSPHERE [J].
FLECK, JA ;
MORRIS, JR ;
FEIT, MD .
APPLIED PHYSICS, 1976, 10 (02) :129-160
[10]   Stability analysis of the spatiotemporal Lugiato-Lefever model for Kerr optical frequency combs in the anomalous and normal dispersion regimes [J].
Godey, Cyril ;
Balakireva, Irina V. ;
Coillet, Aurelien ;
Chembo, Yanne K. .
PHYSICAL REVIEW A, 2014, 89 (06)