A cooperative conjugate gradient method for linear systems permitting efficient multi-thread implementation

被引:0
|
作者
Bhaya, Amit [1 ]
Bliman, Pierre-Alexandre [2 ,3 ]
Niedu, Guilherme [4 ]
Pazos, Fernando A. [5 ]
机构
[1] Univ Fed Rio de Janeiro, Dept Elect Engn, Rio De Janeiro, RJ, Brazil
[2] UPMC Univ Paris 06, Inria, Sorbonne Univ, Lab JL Lions,UMR CNRS 7598, Paris, France
[3] Fundacao Getulio Vargas, Escola Matemat Aplicada, Rio De Janeiro, RJ, Brazil
[4] Petrobras SA, Rio De Janeiro, Brazil
[5] Univ Estado Rio De Janeiro, Dept Elect & Telecommun Engn, Rio De Janeiro, RJ, Brazil
关键词
Discrete linear systems; Iterative methods; Conjugate gradient algorithm; Cooperative algorithms; HYBRID PROCEDURES; ALGORITHM;
D O I
10.1007/s40314-016-0416-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper revisits, in a multi-thread context, the so-called multi-parameter or block conjugate gradient (B-CG) methods, first proposed as sequential algorithms by O'Leary and Brezinski, for the solution of the linear system Ax = b, for an n-dimensional symmetric positive definite matrix A. Instead of the scalar parameters of the classical CG algorithm, which minimizes a scalar functional at each iteration, multiple descent and conjugate directions are updated simultaneously. Implementation involves the use of multiple threads and the algorithm is referred to as cooperative CG (CCG) to emphasize that each thread now uses information that comes from the other threads. It is shown that for a sufficiently large matrix dimension n, the use of an optimal number of threads results in a worst case flop count of O (n(7/3)) in exact arithmetic. Numerical experiments on a multi-core, multi-thread computer, for synthetic and real matrices, illustrate the theoretical results.
引用
收藏
页码:1601 / 1628
页数:28
相关论文
共 50 条
  • [1] A cooperative conjugate gradient method for linear systems permitting efficient multi-thread implementation
    Amit Bhaya
    Pierre-Alexandre Bliman
    Guilherme Niedu
    Fernando A. Pazos
    Computational and Applied Mathematics, 2018, 37 : 1601 - 1628
  • [2] Multi-thread integrative cooperative optimization for rich combinatorial problems
    Crainic, Teodor Gabriel
    Crisan, Gloria Cerasela
    Gendreau, Michel
    Lahrichi, Nadia
    Rei, Walter
    2009 IEEE INTERNATIONAL SYMPOSIUM ON PARALLEL & DISTRIBUTED PROCESSING, VOLS 1-5, 2009, : 2284 - +
  • [3] A multi-thread scheduling method for 3D CT image reconstruction using multi-GPU
    Zhu, Yining
    Zhao, Yunsong
    Zhao, Xing
    JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY, 2012, 20 (02) : 187 - 197
  • [4] An efficient hybrid conjugate gradient method for unconstrained optimization
    Ibrahim, Abdulkarim Hassan
    Kumam, Poom
    Kamandi, Ahmad
    Abubakar, Auwal Bala
    OPTIMIZATION METHODS & SOFTWARE, 2022, 37 (04) : 1370 - 1383
  • [5] A new conjugate gradient method with an efficient memory structure
    Fatemi, Masoud
    COMPUTATIONAL & APPLIED MATHEMATICS, 2019, 38 (02)
  • [6] An approximate inverse preconditioner and its implementation for conjugate gradient method
    Dag, Hasan
    PARALLEL COMPUTING, 2007, 33 (02) : 83 - 91
  • [7] An efficient adaptive scaling parameter for the spectral conjugate gradient method
    Zhang, Yang
    Dan, Bin
    OPTIMIZATION LETTERS, 2016, 10 (01) : 119 - 136
  • [8] On the preconditioned conjugate gradient method for complex symmetric systems
    Yuan, Xiang
    Zhang, Nai-Min
    APPLIED MATHEMATICS LETTERS, 2021, 120
  • [9] An Efficient Barzilai-Borwein Conjugate Gradient Method for Unconstrained Optimization
    Liu, Hongwei
    Liu, Zexian
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2019, 180 (03) : 879 - 906
  • [10] An extension of the conjugate residual method to nonsymmetric linear systems
    Sogabe, T.
    Sugihara, M.
    Zhang, S. -L.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 226 (01) : 103 - 113