Perturbation of topological solitons due to sine-Gordon equation and its type

被引:65
作者
Fabian, Anne L. [2 ]
Kohl, Russell [1 ]
Biswas, Anjan [1 ]
机构
[1] Delaware State Univ, Dept Appl Math & Theoret Phys, Ctr Res & Educ Opt Sci & Applicat, Dover, DE 19901 USA
[2] Delaware State Univ, Dept Math, Dover, DE 19901 USA
关键词
Topological solitons; Sine-Gordon equation; Kinks; Soliton perturbation theory; VARIABLE SEPARATED ODE; TRAVELING-WAVE SOLUTIONS; TANH METHOD; DYNAMICS;
D O I
10.1016/j.cnsns.2008.01.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies the adiabatic dynamics of topological solitons in presence of perturbation terms. The solitons due to sine-Gordon equation, double sine-Gordon equation, sine-cosine Gordon equation and double sine-cosine Gordon equations are studied, in this paper. The adiabatic variation of soliton velocity is obtained in this paper by soliton perturbation theory. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:1227 / 1244
页数:18
相关论文
共 30 条
[1]  
Abdullaev F., 1994, THEORY SOLITONS INHO
[2]  
Ablowitz MJ., 1981, SOLITONS INVERSE SCA, DOI DOI 10.1137/1.9781611970883
[3]   New exact solutions of the double sine-Gordon equation using symbolic computations [J].
Bin, He ;
Qing, Meng ;
Yao, Long ;
Rui Weiguo .
APPLIED MATHEMATICS AND COMPUTATION, 2007, 186 (02) :1334-1346
[5]   Physical dynamics of quasi-particles in nonlinear wave equations [J].
Christov, Ivan ;
Christov, C. I. .
PHYSICS LETTERS A, 2008, 372 (06) :841-848
[6]  
Dauxois T, 2006, Physics of solitons
[7]   Exact solution to an approximate sine-Gordon equation in (n+1)-dimensional space [J].
Feng, ZS .
PHYSICS LETTERS A, 2002, 302 (2-3) :64-76
[8]  
FOKAS AS, 1993, IMPORTANT DEV SOLITO
[9]   3-PARTICLE AND INELASTIC EFFECTS IN THE INTERACTION OF CONSERVATIVELY PERTURBED SINE-GORDON EQUATION KINKS [J].
KIVSHAR, YS ;
MALOMED, BA .
PHYSICS LETTERS A, 1986, 115 (08) :381-384
[10]   DYNAMICS OF SOLITONS IN NEARLY INTEGRABLE SYSTEMS [J].
KIVSHAR, YS ;
MALOMED, BA .
REVIEWS OF MODERN PHYSICS, 1989, 61 (04) :763-915