On a class of inverse problems for a heat equation with involution perturbation

被引:21
|
作者
Al-Salti, Nasser [1 ]
Kirane, Mokhtar [2 ]
Torebek, Berikbol T. [3 ,4 ]
机构
[1] Sultan Qaboos Univ, Dept Math, POB 36, Muscat 123, Oman
[2] Univ La Rochelle, Fac Sci & Technol, LaSIE, Ave Michel Crepeau, F-17000 La Rochelle, France
[3] Inst Math & Math Modeling, Pushkin St 125, Alma Ata 050010, Kazakhstan
[4] Al Farabi Kazakh Natl Univ, Al Farabi Ave 71, Alma Ata 050040, Kazakhstan
来源
HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS | 2019年 / 48卷 / 03期
关键词
Inverse problems; heat equation; involution perturbation; BOUNDARY-VALUE-PROBLEMS; DIFFERENTIAL-EQUATIONS; TEMPERATURE; REFLECTION; DENSITY;
D O I
10.15672/HJMS.2017.538
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A class of inverse problems for a heat equation with involution perturbation is considered using four different boundary conditions, namely, Dirichlet, Neumann, periodic and antiperiodic boundary conditions. Proved theorems on existence and uniqueness of solutions to these problems are presented. Solutions are obtained in the form of series expansion using a set of appropriate orthogonal basis for each problem. Convergence of the obtained solutions is also discussed.
引用
收藏
页码:669 / 681
页数:13
相关论文
共 50 条
  • [1] Inverse problems for a nonlocal wave equation with an involution perturbation
    Kirane, Mokhtar
    Al-Salti, Nasser
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (03): : 1243 - 1251
  • [2] On a Class of Inverse Problems for a Parabolic Equation with Involution
    Sarsenbi, Abdisalam A.
    INTERNATIONAL CONFERENCE FUNCTIONAL ANALYSIS IN INTERDISCIPLINARY APPLICATIONS (FAIA2017), 2017, 1880
  • [3] Approximate Solution of Inverse Problems for the Heat Equation with a Singular Perturbation
    A. M. Denisov
    Computational Mathematics and Mathematical Physics, 2021, 61 : 2004 - 2014
  • [4] Approximate Solution of Inverse Problems for the Heat Equation with a Singular Perturbation
    Denisov, A. M.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2021, 61 (12) : 2004 - 2014
  • [5] On a class of fractional elliptic problems with an involution perturbation
    Turmetov, Batirkhan Kh.
    Torebek, Berikbol T.
    INTERNATIONAL CONFERENCE ON ANALYSIS AND APPLIED MATHEMATICS (ICAAM 2016), 2016, 1759
  • [6] INVERSE PROBLEMS FOR THE BEAM VIBRATION EQUATION WITH INVOLUTION
    Imanbetova, A. B.
    Sarsenbi, A. A.
    Seilbekov, B. N.
    VESTNIK UDMURTSKOGO UNIVERSITETA-MATEMATIKA MEKHANIKA KOMPYUTERNYE NAUKI, 2023, 33 (03): : 452 - 466
  • [7] Inverse source problems for a wave equation with involution
    Tapdigoglu, R.
    Torebek, B. T.
    BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2018, 91 (03): : 75 - 82
  • [8] Solvability of a Mixed Problem for a Heat Equation with an Involution Perturbation
    Sarsenbi, Abdisalam
    THIRD INTERNATIONAL CONFERENCE OF MATHEMATICAL SCIENCES (ICMS 2019), 2019, 2183
  • [9] INVERSE PROBLEMS FOR THE HEAT EQUATION WITH MEMORY
    Avdonin, Sergei A.
    Ivanov, Sergei A.
    Wang, Jun-Min
    INVERSE PROBLEMS AND IMAGING, 2019, 13 (01) : 31 - 38
  • [10] The modified fractional-order quasi-reversibility method for a class of direct and inverse problems governed by time-fractional heat equations with involution perturbation
    Benabbes, Fares
    Boussetila, Nadjib
    Lakhdari, Abdelghani
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (12) : 9524 - 9555